Skip to main content

Abstract

Vasospasm is the most significant complication in patients with aneurysmal subarachnoid hemorrhage (aSAH). The risk of vasospasm is around 30% starting day 4 of the bleed depending on the severity of the bleed [9]. Vasospasm contributes to 30% mortality and 34% permanent neurological deficits from delayed cerebral vasospasm (DCI). Vasospasm is observed not only in Aneurysmal SAH but also in Traumatic SAH (TSAH), Intraventricular hemorrhage (IVH), Subdural hematoma (SDH), and in patients with cerebral contusions. Vasospasm creates distal ischemia and anoxic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapter 142: Hypocarbia and hypercarbia. https://accessanesthesiology.mhmedical.com/content.aspx?bookid=974&sectionid=61590019.

  2. Hassler W, Chioffi F. CO2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir. 1989;98(3–4):167–75. https://doi.org/10.1007/BF01407344.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Q, et al. Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology. 2010;112(2):288–97. https://doi.org/10.1097/ALN.0b013e3181ca8257.

    Article  PubMed  Google Scholar 

  4. Psychogios K, Tsivgoulis G. Subarachnoid hemorrhage, vasospasm, and delayed cerebral ischemia prevention, effective monitoring, and early detection are the keys to successful management after subarachnoid hemorrhage. Pract Neurol. 2019 Practical Neurology.

    Google Scholar 

  5. Nassar HGE, Ghali AA, Bahnasy WS, Elawady MM. Vasospasm following aneurysmal subarachnoid hemorrhage: prediction, detection, and intervention. Egypt J Neurol Psychiatry Neurosurg. 2019;55(1):3. https://doi.org/10.1186/s41983-018-0050-y.

    Article  Google Scholar 

  6. Xu L, et al. Management of spontaneous subarachnoid hemorrhage patients with negative initial digital subtraction angiogram findings: conservative or aggressive? Biomed Res Int. 2017;2017:1–10. https://doi.org/10.1155/2017/2486859.

    Article  Google Scholar 

  7. Fang Y, et al. New risk score of the early period after spontaneous subarachnoid hemorrhage: for the prediction of delayed cerebral ischemia. CNS Neurosci Ther. 2019;25(10):1173–81. https://doi.org/10.1111/cns.13202.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown RJ, Kumar A, Dhar R, Sampson TR, Diringer MN. The relationship between delayed infarcts and angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2013;72(5):702–8. https://doi.org/10.1227/NEU.0b013e318285c3db.

    Article  PubMed  Google Scholar 

  9. Frontera JA, et al. Prediction of symptomatic vasospasmafter subarachnoid hemorrhage: the modified fisher scale. Neurosurgery. 2006;59(1):21–7. https://doi.org/10.1227/01.NEU.0000218821.34014.1B.

    Article  PubMed  Google Scholar 

  10. Fu F-W, et al. Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by transverse sinus thrombosis: a case report and review of literature. Medicine. 2017;96(33):e7374. https://doi.org/10.1097/MD.0000000000007374.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bauer AM, Rasmussen PA. Treatment of intracranial vasospasm following subarachnoid hemorrhage. Front Neurol. 2014;5:72. https://doi.org/10.3389/fneur.2014.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Budohoski KP, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7. https://doi.org/10.1161/STROKEAHA.112.669788.

    Article  PubMed  Google Scholar 

  13. Ryttlefors M, Enblad P, Ronne-Engström E, Persson L, Ilodigwe D, Macdonald RL. Patient age and vasospasm after subarachnoid hemorrhage. Neurosurgery. 2010;67(4):911–7. https://doi.org/10.1227/NEU.0b013e3181ed11ab.

    Article  PubMed  Google Scholar 

  14. Mills JN, Mehta V, Russin J, Amar AP, Rajamohan A, Mack WJ. Advanced imaging modalities in the detection of cerebral vasospasm. Neurol Res Int. 2013;2013:1–15. https://doi.org/10.1155/2013/415960.

    Article  Google Scholar 

  15. Samagh N, Bhagat H, Jangra K. Monitoring cerebral vasospasm: how much can we rely on transcranial Doppler. J Anaesthesiol Clin Pharmacol. 2019;35(1):12–8. https://doi.org/10.4103/joacp.JOACP_192_17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kiser TH. Cerebral vasospasm in critically III patients with aneurysmal subarachnoid hemorrhage: does the evidence support the ever-growing list of potential pharmacotherapy interventions? Hosp Pharm. 2014;49(10):923–41. https://doi.org/10.1310/hpj4910-923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar G, Alexandrov AV. Vasospasm surveillance with transcranial Doppler sonography in subarachnoid hemorrhage. J Ultrasound Med. 2015;34(8):1345–50. https://doi.org/10.7863/ultra.34.8.1345.

    Article  PubMed  Google Scholar 

  18. Fragata I, et al. Computed tomography perfusion as a predictor of delayed cerebral ischemia and functional outcome in spontaneous subarachnoid hemorrhage: a single center experience. Neuroradiol J. 2019;32(3):179–88. https://doi.org/10.1177/1971400919829048.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anderson GB, Ashforth R, Steinke DE, Findlay JM. CT angiography for the detection of cerebral vasospasm in patients with acute subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2000;21(6):1011–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takano K, Hida K, Iwaasa M, Inoue T, Yoshimitsu K. Three-dimensional spin-echo-based black-blood MRA in the detection of vasospasm following subarachnoid hemorrhage. J Magn Reson Imaging. 2019;49(3):800–7. https://doi.org/10.1002/jmri.26231.

    Article  PubMed  Google Scholar 

  21. Heiserman JE. MR angiography for the diagnosis of vasospasm after subarachnoid hemorrhage. Is it accurate? Is it safe? Am J Neuroradiol. 2000;21(9):1571–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Grubb RL, Raichle ME, Eichling JO, Gado MH. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977;46(4):446–53. https://doi.org/10.3171/jns.1977.46.4.0446.

    Article  PubMed  Google Scholar 

  23. Sarrafzadeh AS, Nagel A, Czabanka M, Denecke T, Vajkoczy P, Plotkin M. Imaging of hypoxic–ischemic penumbra with 18F-fluoromisonidazole PET/CT and measurement of related cerebral metabolism in aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;30(1):36–45. https://doi.org/10.1038/jcbfm.2009.199.

    Article  CAS  PubMed  Google Scholar 

  24. Carlson AP, Yonas H. Radiographic assessment of vasospasm after aneurysmal subarachnoid hemorrhage: the physiological perspective. Neurol Res. 2009;31(6):593–604. https://doi.org/10.1179/174313209X455754.

    Article  PubMed  Google Scholar 

  25. Sarrafzadeh AS, Haux D, Lüdemann L, Amthauer H, Plotkin M, Küchler I, Unterberg AW. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke. 2004;35(3):638–43. [PubMed] [Ref list].

    Article  PubMed  Google Scholar 

  26. Terry A, et al. Safety and technical efficacy of over-the-wire balloons for the treatment of subarachnoid hemorrhage–induced cerebral vasospasm. FOC. 2006;21(3):1–7. https://doi.org/10.3171/foc.2006.21.3.14.

    Article  Google Scholar 

  27. Choi BJ, Lee TH, Lee JI, Ko JK, Park HS, Choi CH. Safety and efficacy of transluminal balloon angioplasty using a compliant balloon for severe cerebral vasospasm after an aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2011;49(3):157. https://doi.org/10.3340/jkns.2011.49.3.157.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yao G-E, et al. Vasospasm after subarachnoid hemorrhage: a 3D rotational angiography study. In: Early brain injury or cerebral vasospasm. Vienna: Springer; 2011. p. 221–5. https://doi.org/10.1007/978-3-7091-0356-2_40.

    Chapter  Google Scholar 

  29. Lad SP, Guzman R, Kelly ME, Li G, Lim M, Lovbald K, Steinberg GK. Cerebral perfusion imaging in vasospasm. Neurosurg Focus. 2006;21(3):E7.

    Article  PubMed  Google Scholar 

  30. Yonas H, Pindzola RR, Meltzer CC, Sasser H. Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery. 1998;42(5):1005–10; discussion 1011-2.

    Article  CAS  PubMed  Google Scholar 

  31. Rajendran JG, Lewis DH, Newell DW, Winn HR. Brain SPECT used to evaluate vasospasm after subarachnoid hemorrhage: correlation with angiography and transcranial Doppler. Clin Nucl Med. 2001;26(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  32. Rawluk D, Smith FW, Deans HE, Gemmell HG, MacDonald AF. Technetium 99m HMPAO scanning in patients with subarachnoid haemorrhage: a preliminary study. Br J Radiol. 1988;61(721):26–9. https://doi.org/10.1259/0007-1285-61-721-26.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis DH, Eskridge JM, Newell DW, Grady MS, Cohen WA, Dalley RW, Loyd D, Grothaus-King A, Young P, Winn HR. Brain SPECT and the effect of cerebral angioplasty in delayed ischemia due to vasospasm. J Nucl Med. 1992;33(10):1789–96.

    CAS  PubMed  Google Scholar 

  34. Mickey B, Vorstrup S, Voldby B, Lindewald H, Harmsen A, Lassen NA. Serial measurement of regional cerebral blood flow in patients with SAH using 133Xe inhalation and emission computerized tomography. J Neurosurg. 1984;60(5):916–22.

    Article  CAS  PubMed  Google Scholar 

  35. Mills JN, Mehta V, Russin J, Amar AP, Rajamohan A, Mack WJ. Advanced imaging modalities in the detection of cerebral vasospasm. Neurol Res Int. 2013;2013:415960. https://doi.org/10.1155/2013/415960.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Drayer BP, Wolfson SK, Reinmuth OM, Dujovny M, Boehnke M, Cook EE. Xenon enhanced CT for analysis of cerebral integrity, perfusion, and blood flow. Stroke. 1978;9(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  37. Plougmann J, Astrup J, Pedersen J, Gyldensted C. Effect of stable xenon inhalation on intracranial pressure during measurement of cerebral blood flow in head injury. J Neurosurg. 1994;81(6):822–8. https://doi.org/10.3171/jns.1994.81.6.0822.

    Article  CAS  PubMed  Google Scholar 

  38. Knuckey NW, Fox RA, Surveyor I, Stokes BA. Early cerebral blood flow and computerized tomography in predicting ischemia after cerebral aneurysm rupture. J Neurosurg. 1985;62(6):850–5. [PubMed] [Ref list].

    Article  CAS  PubMed  Google Scholar 

  39. Lindegaard K-F, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1989;100(1–2):12–24. https://doi.org/10.1007/BF01405268.

    Article  CAS  PubMed  Google Scholar 

  40. Murphy A, et al. Changes in cerebral perfusion with induced hypertension in aneurysmal subarachnoid hemorrhage: a pilot and feasibility study. Neurocrit Care. 2017;27(1):3–10. https://doi.org/10.1007/s12028-017-0379-6.

    Article  PubMed  Google Scholar 

  41. Harrigan MR, Magnano CR, Guterman LR, Hopkins LN. Computed tomographic perfusion in the management of aneurysmal subarachnoid hemorrhage: new application of an existent technique. Neurosurgery. 2005;56(2):304–17; discussion 304–317. https://doi.org/10.1227/01.neu.0000148902.61943.df.

    Article  PubMed  Google Scholar 

  42. Aralasmak A, Akyuz M, Ozkaynak C, Sindel T, Tuncer R. CT angiography and perfusion imaging in patients with subarachnoid hemorrhage: correlation of vasospasm to perfusion abnormality. Neuroradiology. 2009;51(2):85–93. https://doi.org/10.1007/s00234-008-0466-7.

    Article  PubMed  Google Scholar 

  43. Hoeffner EG, et al. Cerebral perfusion CT: technique and clinical applications. Radiology. 2004;231(3):632–44. https://doi.org/10.1148/radiol.2313021488.

    Article  PubMed  Google Scholar 

  44. Dankbaar JW, Rijsdijk M, van der Schaaf IC, Velthuis BK, Wermer MJH, Rinkel GJE. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;51(12):813–9. https://doi.org/10.1007/s00234-009-0575-y.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sorensen AG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996;199(2):391–401. https://doi.org/10.1148/radiology.199.2.8668784.

    Article  CAS  PubMed  Google Scholar 

  46. Rordorf G, et al. Diffusion- and perfusion-weighted imaging in vasospasm AFTER subarachnoid hemorrhage. Stroke. 1999;30(3):599–605. https://doi.org/10.1161/01.STR.30.3.599.

    Article  CAS  PubMed  Google Scholar 

  47. Wani AA, Phadke R, Behari S, Sahu R, Jaiswal A, Jain V. Role of diffusion-weighted MRG in predicting outcome in subarachnoid hemorrhage due to anterior communicating artery aneurysms. Turk Neurosurg. 2008;18(1):10–6.

    PubMed  Google Scholar 

  48. Hattingen E, et al. Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage. Neuroradiology. 2008;50(11):929–38. https://doi.org/10.1007/s00234-008-0424-4.

    Article  PubMed  Google Scholar 

  49. Das JM, Zito PM. Nimodipine. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021.

    Google Scholar 

  50. Dorhout Mees S, et al. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2007;2007(3):CD000277. https://doi.org/10.1002/14651858.CD000277.pub3.

    Article  PubMed Central  Google Scholar 

  51. Stippler M, et al. Magnesium infusion for vasospasm prophylaxis after subarachnoid hemorrhage. J Neurosurg. 2006;105(5):723–9. https://doi.org/10.3171/jns.2006.105.5.723.

    Article  CAS  PubMed  Google Scholar 

  52. Wong GKC, Poon WS. Magnsium and vasospasm. J Neurosurg. 2007;106(5):938–9; author reply 939-940. https://doi.org/10.3171/jns.2007.106.5.938.

    Article  PubMed  Google Scholar 

  53. Suarez JI, Participants in the International Multidisciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage. Magnesium sulfate administration in subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):302–7. https://doi.org/10.1007/s12028-011-9603-y.

    Article  CAS  PubMed  Google Scholar 

  54. Durrant JC, Hinson HE. Rescue therapy for refractory vasospasm after subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2015;15(2):521. https://doi.org/10.1007/s11910-014-0521-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nishiguchi M, Ono S, Iseda K, Manabe H, Hishikawa T, Date I. Effect of vasodilation by milrinone, a phosphodiesterase III inhibitor, on vasospastic arteries after a subarachnoid hemorrhage in vitro and in vivo: effectiveness of cisternal injection of milrinone. Neurosurgery. 2010;66(1):158–64; discussion 164. https://doi.org/10.1227/01.NEU.0000363153.62579.FF.

    Article  PubMed  Google Scholar 

  56. Fraticelli AT, Cholley BP, Losser M-R, Saint Maurice J-P, Payen D. Milrinone for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2008;39(3):893–8. https://doi.org/10.1161/STROKEAHA.107.492447.

    Article  CAS  PubMed  Google Scholar 

  57. Kieninger M, et al. Side effects of long-term continuous intra-arterial nimodipine infusion in patients with severe refractory cerebral vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2018;28(1):65–76. https://doi.org/10.1007/s12028-017-0428-1.

    Article  CAS  PubMed  Google Scholar 

  58. Duman E, Karakoç F, Pinar HU, Dogan R, Fırat A, Yıldırım E. Higher dose intra-arterial milrinone and intra-arterial combined milrinone-nimodipine infusion as a rescue therapy for refractory cerebral vasospasm. Interv Neuroradiol. 2017;23(6):636–43. https://doi.org/10.1177/1591019917732288.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keuskamp J, Murali R, Chao KH. High-dose intraarterial verapamil in the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. JNS. 2008;108(3):458–63. https://doi.org/10.3171/JNS/2008/108/3/0458.

    Article  CAS  Google Scholar 

  60. Feng L, et al. Intraarterially administered verapamil as adjunct therapy for cerebral vasospasm: safety and 2-year experience. AJNR Am J Neuroradiol. 2002;23(8):1284–90.

    PubMed  PubMed Central  Google Scholar 

  61. Liu J, Chen Q. Effect of statins treatment for patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis of observational studies and randomized controlled trials. Int J Clin Exp Med. 2015;8(5):7198–208.

    PubMed  PubMed Central  Google Scholar 

  62. Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther. 2019;193:121–34. https://doi.org/10.1016/j.pharmthera.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  63. Huang Y, Wu J, Su T, Zhang S, Lin X. Fasudil, a Rho-Kinase inhibitor, exerts cardioprotective function in animal models of myocardial ischemia/reperfusion injury: a meta-analysis and review of preclinical evidence and possible mechanisms. Front Pharmacol. 2018;9:1083. https://doi.org/10.3389/fphar.2018.01083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Yf, Qiu HC, Su J. et al. Drug treatment of cerebral vasospasm after subarachnoid hemorrhage following aneurysms. Chin Neurosurg Jl 2, 4 (2016). https://doi.org/10.1186/s41016-016-0023-x.

  65. Qureshi AI, et al. Therapeutic benefit of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a meta-analysis of randomized and nonrandomized studies. J Vasc Interv Neurol. 2018;10(2):33–40.

    PubMed  PubMed Central  Google Scholar 

  66. Macdonald RL. Endothelin antagonists in subarachnoid hemorrhage: what next? Crit Care. 2012;16(6):171. https://doi.org/10.1186/cc11822.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ma J, Huang S, Ma L, Liu Y, Li H, You C. Endothelin-receptor antagonists for aneurysmal subarachnoid hemorrhage: an updated meta-analysis of randomized controlled trials. Crit Care. 2012;16(5):R198. https://doi.org/10.1186/cc11686.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haley EC Jr, Kassell NF, Torner JC. A randomized trial of nicardipine in subarachnoid hemorrhage: angiographic and transcranial Doppler ultrasound results – a report of the Cooperative Aneurysm Study. J Neurosurg. 1993;78:548–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekar Pingili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pingili, C.S., Arora, N. (2022). Vasospasm. In: Arora, N. (eds) Procedures and Protocols in the Neurocritical Care Unit. Springer, Cham. https://doi.org/10.1007/978-3-030-90225-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90225-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90224-7

  • Online ISBN: 978-3-030-90225-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics