Skip to main content
Log in

CO2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

CO2 reactivity of the brain vessels was investigated in 33 patients (Grade I–III after Hunt and Hess) with cerebral vasospasm after an aneurysmal subarachnoid haemorrhage (SAH) and after early oper ation within 72 hours. In all cases, transcranial Doppler sonography was used to measure flow velocities in the middle cerebral artery (MCA) and internal carotid artery (ICA) and vasomotor reactivity to CO2 changes.

Vasospastic conditions lead to higher flow velocities through the narrow segment, lower peripheral stream resistance due to the poststenotic pressure drop and lower vasodilating capacities of arterioles under hypercapnia. In severe vasospastic conditions, the peripheral stream bed is already maximally dilated and the hypercapnic response is weak. On the other hand, the peripheral vascular bed reacts normally to hypocapnia in all vasospastic situations. Our results point out two dangerous conditions of vasospastic disease :

  1. 1)

    exhaustion of peripheral vasodilating capacities, and

  2. 2)

    hyperventilatory therapy.

Both of these situations can result in a reduction of CBF to brain tissue, mainly for two reasons:

  1. 1)

    In the former, a further increase in vasospasm cannot be compensated for anymore when the peripheral arterioles are maximally dilated, and

  2. 2)

    in the latter, hypocapnia produces a strong peripheral vasoconstrictor response with further reduction of CBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaslid R, Huber P, Nomes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60: 37–41

    PubMed  Google Scholar 

  2. Aaslid R, Markwalder T-M, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57: 769–774

    PubMed  Google Scholar 

  3. du Bolay G, Symon L, Ackerman RH, Dorsch D, Kendall BE, Shah SH (1973) The reactivity of the spastic arteries. Neuroradiology 5: 37–39

    PubMed  Google Scholar 

  4. Dernbach PD, Little JR, Jones SC, Ebrahim ZY (1988) Altered cerebral autoregulation and CO2 reactivity after aneurysmal subarachnoid hemorrhage. J Neurosurg 22: 822–826

    Google Scholar 

  5. Enevoldsen EM, Jensen FT (1978) Autoregulations and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48: 689–703

    PubMed  Google Scholar 

  6. Evans DH, Barrie WW, Asher MJ, Bentley S, Bell PRF (1980) The relationship between ultrasonic pulsatility index and proximal arterial stenosis in a canine model. Circ Res 46: 470–475

    PubMed  Google Scholar 

  7. Faccenda F, Usui Y, Spencer M (1985) Doppler measurement of the pressure drop caused by arterial stenosis: An experimental study: A case report. Angiology 4: 899–905

    Google Scholar 

  8. Farrar JK, Gamache FW Jr, Ferguson GG, Barger J, Varkey GP, Drage CG (1981) Effects of profound hypotension on cerebral blood flow during surgery for intracranial aneurysms. J Neurosurg 55: 857–864

    PubMed  Google Scholar 

  9. Fein JM, Boulos R (1973) Local cerebral blood flow in experimental middle cerebral artery vasospasm. J Neurosurg 39: 337–347

    PubMed  Google Scholar 

  10. Fog M (1973) Cerebral circulation. The reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psych 37: 351–364

    Google Scholar 

  11. Hrders A, Gilsbach J (1987) Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound. J Neurosurg 66: 718–728

    PubMed  Google Scholar 

  12. Haßler W, Steinmetz H, Gawlowski J (1987) Transcranial dopplersonographical study of flow velocities before and after AVM removal-normal recordings and CO2 reactivity. In: Wüllenweber Ret al (eds) Advances in neurosurgery, vol 15. Springer, Berlin Heidelberg New York Tokyo, pp 111–116

    Google Scholar 

  13. Haßler W (1986) Hemodynamic aspects of cerebral angiomas. Springer, Wien New York, 136 pp

    Google Scholar 

  14. Haßler W, Steinmetz H (1987) Normwerte der CO2 Reaktivität in verschiedenen Altersgruppen. In: Transkranielle Dopplersonographie, Stellenwert in Diagnostik und Therapie. Springer, Wien New York, pp, 123–128

    Google Scholar 

  15. Heilbrun MP, Olesen J, Lassen NA (1972) Regional cerebral blood flow studies in subarachnoid hemorrhage. J Neurosurg 37: 36–44

    PubMed  Google Scholar 

  16. Heros RC, Zervas NT, Varsos V (1983) Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 14: 599–608

    PubMed  Google Scholar 

  17. Huber P, Handa J (1967) Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Invest Radiol 2: 17–32

    PubMed  Google Scholar 

  18. Hunt WE, Hess RM (1968) Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28: 14–20

    PubMed  Google Scholar 

  19. Ishii R (1979) Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 50: 587–594

    PubMed  Google Scholar 

  20. Jakubowski J, Bell BA, Symon L, Zawirski MB, Francis DM (1982) A primate model of subarachnoid hemorrhage: change in regional cerebral blood flow, autoregulation, carbon dioxide reactivity, and central conduction time. Stroke 13: 601–611

    PubMed  Google Scholar 

  21. Kety SS, Schmidt CF (1984) The effects of altered tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27: 484–492

    Google Scholar 

  22. Kutsuzawa T, Takahashi S, Saito C (1968) Studies of cerebral hemodynamics in subarachnoid hemorrhage. Tohoku J Exp Med 94: 407–15

    PubMed  Google Scholar 

  23. Lindegaard K-F, Grip A, Nornes H (1980) Precerebral haemodynamics in brain tamponade. Part 1: Clinical studies of blood flow velocity. Neurochirurgia (Stuttg) 23: 133–142

    Google Scholar 

  24. Lindegaard K-F, Grip A, Nornes H (1980) Precerebral hemodynamics in brain tamponade. Part 2: Experimental studies. Neurochirurgia (Stuttg) 23: 187–196

    Google Scholar 

  25. Markwalder T-M, Grolimund P, Seiler RW, Roth F, Aaslid R (1984) Dependence of blood flow velocity in the middle cerebral artery on end tidal carbon dioxide partial pressure. A transcranial Doppler study. J Cereb Blood Flow Metab 4: 368–372

    PubMed  Google Scholar 

  26. Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, Eidelman BH (1981) Cerebro-vascular reactivity and metabolism after subarachnoid hemorrhage in baboons. Stroke 12: 58–65

    PubMed  Google Scholar 

  27. Nornes H, Wikeby P (1977) Cerebral arterial blood flow dynamics. J Neurosurg 47: 810–818

    Google Scholar 

  28. Pourcelot L (1974) Applications cliniques de l'examen Doppler transcutane. Les Colloques de l'Institut National de la Santé et de la Recherche Médicale (INSERM) 34: 213–240

    Google Scholar 

  29. Seiler MD, Grolimund P (1986) Cerebral vasospasm evaluated by transcranial ultrasound correlated with clinical grade and CT visualized subarachnoid hemorrhage. J Neurosurg 64: 590–600

    Google Scholar 

  30. Strandgaard S, Paulson OB (1984) Cerebral autoregulation. Stroke 15: 413–416

    PubMed  Google Scholar 

  31. Symon L, Held K, Dorsch NWC (1973) A study of regional autorregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4: 139–147

    PubMed  Google Scholar 

  32. Voldby B, Enevoldsen EM, Jensen FT (1985) Cerebro-vascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg 62: 59–67

    PubMed  Google Scholar 

  33. Zwiebel WJ, Zagzebski JA, Crummy AB, Hirschner M (1982) Correlation of peak Doppler frequency with lumen narrowing in carotid stenosis. Stroke 13: 386–391

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassler, W., Chioffi, F. CO2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta neurochir 98, 167–175 (1989). https://doi.org/10.1007/BF01407344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01407344

Keywords

Navigation