Skip to main content

Biology and Clinical Evaluation of T/NK Cell Engagers

  • Chapter
  • First Online:
Gene and Cellular Immunotherapy for Cancer

Abstract

Bispecific engagers are cancer immunotherapeutics that incorporate at least two antigen recognition domains and engager both a tumor-associated antigen and an immune effector cell surface molecule to facilitate targeted antitumor activity. This strategy is most advanced for CD19+ B cell malignancies, where the CD19xCD3 bispecific T cell engager (BiTE) blinatumomab has achieved FDA approval. However, efforts are underway to expand the application of this technology to other malignancies. This chapter reviews design strategies to decrease immunogenicity, alter kinetics, enhance effector function, optimize antigen recognition, and direct specific assembly. Additionally, we explore alternative immune effector cell platforms and delivery methods. We describe the landscape of ongoing clinical studies of bispecific T cell and natural killer cell engagers for hematologic malignancies and solid tumors. As the clinical translation of bispecific immune cell engagers continues to advance, key additional considerations include the impact of the host immune environment, integration with other immune and conventional therapies, and mitigation of toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer. 2021;

    Google Scholar 

  2. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–19.

    Article  CAS  PubMed  Google Scholar 

  3. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9:182–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thakur A, Huang M, Lum LG. Bispecific antibody based therapeutics: strengths and challenges. Blood Rev. 2018;32:339–47.

    Article  CAS  PubMed  Google Scholar 

  5. Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel. 2020;33

    Google Scholar 

  6. Grosserichter-Wagener C, Kos D, van Leeuwen A, et al. Biased anti-idiotype response in rabbits leads to high-affinity monoclonal antibodies to biologics. MAbs. 2020;12:1814661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9:617–21.

    Article  CAS  PubMed  Google Scholar 

  8. Merchant AM, Zhu Z, Yuan JQ, et al. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16:677–81.

    Article  CAS  PubMed  Google Scholar 

  9. Junttila TT, Li J, Johnston J, et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 2014;74:5561–71.

    Article  CAS  PubMed  Google Scholar 

  10. Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J Biol Chem. 2004;279:53907–14.

    Article  CAS  PubMed  Google Scholar 

  11. Xie Z, Guo N, Yu M, Hu M, Shen B. A new format of bispecific antibody: highly efficient heterodimerization, expression and tumor cell lysis. J Immunol Methods. 2005;296:95–101.

    Article  CAS  PubMed  Google Scholar 

  12. Koerber JT, Hornsby MJ, Wells JA. An improved single-chain fab platform for efficient display and recombinant expression. J Mol Biol. 2015;427:576–86.

    Article  CAS  PubMed  Google Scholar 

  13. Klein C, Sustmann C, Thomas M, et al. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs. 2012;4:653–63.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22:3286–97.

    Article  CAS  PubMed  Google Scholar 

  15. Smith EJ, Olson K, Haber LJ, et al. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci Rep. 2015;5:17943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tustian AD, Endicott C, Adams B, Mattila J, Bak H. Development of purification processes for fully human bispecific antibodies based upon modification of protein a binding avidity. MAbs. 2016;8:828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113.

    Article  CAS  PubMed  Google Scholar 

  18. Asano R, Watanabe Y, Kawaguchi H, et al. Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem. 2007;282:27659–65.

    Article  CAS  PubMed  Google Scholar 

  19. Lu CY, Chen GJ, Tai PH, et al. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma. Biochem Biophys Res Commun. 2016;473:808–13.

    Article  CAS  PubMed  Google Scholar 

  20. Hayden MS, Linsley PS, Gayle MA, et al. Single-chain mono- and bispecific antibody derivatives with novel biological properties and antitumour activity from a COS cell transient expression system. Ther Immunol. 1994;1:3–15.

    CAS  PubMed  Google Scholar 

  21. Mallender WD, Voss EW Jr. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem. 1994;269:199–206.

    Article  CAS  PubMed  Google Scholar 

  22. Gruber M, Schodin BA, Wilson ER, Kranz DM. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol. 1994;152:5368–74.

    CAS  PubMed  Google Scholar 

  23. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest. 2019;129:3499–510.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmohl JU, Gleason MK, Dougherty PR, Miller JS, Vallera DA. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target Oncol. 2016;11:353–61.

    Article  CAS  PubMed  Google Scholar 

  26. Cochlovius B, Kipriyanov SM, Stassar MJ, et al. Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res. 2000;60:4336–41.

    CAS  PubMed  Google Scholar 

  27. Holliger P, Brissinck J, Williams RL, Thielemans K, Winter G. Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng. 1996;9:299–305.

    Article  CAS  PubMed  Google Scholar 

  28. Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs. 2014;6:728–39.

    PubMed  Google Scholar 

  29. Reusch U, Harrington KH, Gudgeon CJ, et al. Characterization of CD33/CD3 tetravalent bispecific tandem Diabodies (TandAbs) for the treatment of acute myeloid leukemia. Clin Cancer Res. 2016;22:5829–38.

    Article  CAS  PubMed  Google Scholar 

  30. Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125:4024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010;399:436–49.

    Article  CAS  PubMed  Google Scholar 

  32. Schoonjans R, Willems A, Schoonooghe S, Leoen J, Grooten J, Mertens N. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain. Biomol Eng. 2001;17:193–202.

    Article  CAS  PubMed  Google Scholar 

  33. Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang CH. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood. 2008;111:2211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kellner C, Bruenke J, Horner H, et al. Heterodimeric bispecific antibody-derivatives against CD19 and CD16 induce effective antibody-dependent cellular cytotoxicity against B-lymphoid tumor cells. Cancer Lett. 2011;303:128–39.

    Article  CAS  PubMed  Google Scholar 

  35. Rozan C, Cornillon A, Petiard C, et al. Single-domain antibody-based and linker-free bispecific antibodies targeting FcgammaRIII induce potent antitumor activity without recruiting regulatory T cells. Mol Cancer Ther. 2013;12:1481–91.

    Article  CAS  PubMed  Google Scholar 

  36. Rossi DL, Rossi EA, Cardillo TM, Goldenberg DM, Chang CH. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs. 2014;6:381–91.

    Article  PubMed  Google Scholar 

  37. Xu Y, Lee J, Tran C, et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs. 2015;7:231–42.

    Article  CAS  PubMed  Google Scholar 

  38. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16:57–66.

    Article  CAS  PubMed  Google Scholar 

  39. von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase I/phase II study of Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol. 2016;34:4381–9.

    Article  Google Scholar 

  40. Dave E, Adams R, Zaccheo O, et al. Fab-dsFv: a bispecific antibody format with extended serum half-life through albumin binding. MAbs. 2016;8:1319–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 1830;2013:5526–34.

    Google Scholar 

  42. Muller D, Karle A, Meissburger B, Hofig I, Stork R, Kontermann RE. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem. 2007;282:12650–60.

    Article  PubMed  CAS  Google Scholar 

  43. Fang M, Zhao R, Yang Z, et al. Characterization of an anti-human ovarian carcinomaxanti-human CD3 bispecific single-chain antibody with an albumin-original interlinker. Gynecol Oncol. 2004;92:135–46.

    Article  CAS  PubMed  Google Scholar 

  44. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43:763–71.

    Article  CAS  PubMed  Google Scholar 

  45. Haas C, Krinner E, Brischwein K, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–53.

    Article  CAS  PubMed  Google Scholar 

  46. Austin RJ, Lemon BD, Aaron WH, et al. TriTACs, a novel class of T-cell-engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. 2021;20:109–20.

    Article  CAS  PubMed  Google Scholar 

  47. Sarhan D, Brandt L, Felices M, et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2018;2:1459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming challenges for CD3-bispecific antibody therapy in solid tumors. Cancers (Basel). 2021;13

    Google Scholar 

  49. Epperly R, Gottschalk S, Velasquez MP. Harnessing T cells to target pediatric acute myeloid leukemia: CARs, BiTEs, and beyond. Children (Basel). 2020;7

    Google Scholar 

  50. Liddy N, Bossi G, Adams KJ, et al. Monoclonal TCR-redirected tumor cell killing. Nat Med. 2012;18:980–7.

    Article  CAS  PubMed  Google Scholar 

  51. Dao T, Pankov D, Scott A, et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol. 2015;33:1079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsiue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371

    Google Scholar 

  53. Herrmann AC, Im JS, Pareek S, et al. A novel T-cell engaging bi-specific antibody targeting the leukemia antigen PR1/HLA-A2. Front Immunol. 2018;9:3153.

    Article  CAS  PubMed  Google Scholar 

  54. Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100:690–7.

    Article  CAS  PubMed  Google Scholar 

  55. Liu R, Jiang W, Yang M, et al. Efficient inhibition of human B-cell lymphoma in SCID mice by synergistic antitumor effect of human 4-1BB ligand/anti-CD20 fusion proteins and anti-CD3/anti-CD20 diabodies. J Immunother. 2010;33:500–9.

    Article  PubMed  CAS  Google Scholar 

  56. Velasquez MP, Szoor A, Vaidya A, et al. CD28 and 41BB Costimulation enhances the effector function of CD19-specific engager T cells. Cancer Immunol Res. 2017;5:860–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Otz T, Grosse-Hovest L, Hofmann M, Rammensee HG, Jung G. A bispecific single-chain antibody that mediates target cell-restricted, supra-agonistic CD28 stimulation and killing of lymphoma cells. Leukemia. 2009;23:71–7.

    Article  CAS  PubMed  Google Scholar 

  58. Grosse-Hovest L, Hartlapp I, Marwan W, Brem G, Rammensee HG, Jung G. A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol. 2003;33:1334–40.

    Article  CAS  PubMed  Google Scholar 

  59. Vallera DA, Felices M, McElmurry R, et al. IL15 Trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22:3440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Li H, Xu W, et al. BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against multiple myeloma. J Immunother. 2020;43:175–88.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao Q, Pang J, Yan F, et al. Production of a novel bispecific protein ULBP1xCD19-scFv targeting the NKG2D receptor and CD19 to promote the activation of NK cells. Protein Expr Purif. 2021;178:105783.

    Article  CAS  PubMed  Google Scholar 

  62. Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol Res. 2018;6:776–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Godbersen C, Coupet TA, Huehls AM, et al. NKG2D ligand-targeted bispecific T-cell engagers Lead to robust antitumor activity against diverse human tumors. Mol Cancer Ther. 2017;16:1335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pekar L, Klausz K, Busch M, et al. Affinity maturation of B7-H6 translates into enhanced NK cell-mediated tumor cell lysis and improved proinflammatory cytokine release of bispecific immunoligands via NKp30 engagement. J Immunol. 2021;206:225–36.

    Article  CAS  PubMed  Google Scholar 

  65. Kellner C, Gunther A, Humpe A, et al. Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30. Onco Targets Ther. 2016;5:e1058459.

    Google Scholar 

  66. Das R, Guan P, Wiener SJ, et al. Enhancing the antitumor functions of invariant natural killer T cells using a soluble CD1d-CD19 fusion protein. Blood Adv. 2019;3:813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buatois V, Johnson Z, Salgado-Pires S, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia. Mol Cancer Ther. 2018;17:1739–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mau-Sorensen M, Dittrich C, Dienstmann R, et al. A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3. Cancer Chemother Pharmacol. 2015;75:1065–73.

    Article  PubMed  CAS  Google Scholar 

  69. Borlak J, Langer F, Spanel R, Schondorfer G, Dittrich C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget. 2016;7:28059–74.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fuca G, Spagnoletti A, Ambrosini M, de Braud F, Di Nicola M. Immune cell engagers in solid tumors: promises and challenges of the next generation immunotherapy. ESMO Open. 2021;6:100046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376:836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown P, Ji L, Xu X, et al. A Randomized phase 3 trial of blinatumomab Vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lymphoblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of blinatumomab: a report from children’s oncology group study AALL1331. Blood 2019;134.

    Google Scholar 

  74. Queudeville M, Schlegel P, Heinz AT, et al. Blinatumomab in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Eur J Haematol. 2020;

    Google Scholar 

  75. Martinelli G, Boissel N, Chevallier P, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35:1795–802.

    Article  CAS  PubMed  Google Scholar 

  76. Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17:897–901.

    Article  PubMed  Google Scholar 

  77. Foa R, Bassan R, Vitale A, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020;383:1613–23.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma R, Takemoto C, Waller B, Holland A, Pui CH, Inaba H. Reduced intensity chemotherapy with tyrosine kinase inhibitor and blinatumomab in a pediatric patient with Philadelphia chromosome-positive ALL and mechanical heart valves. Pediatr Blood Cancer. 2021:e28924.

    Google Scholar 

  79. King AC, Pappacena JJ, Tallman MS, Park JH, Geyer MB. Blinatumomab administered concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated consolidation strategy and eradicates measurable residual disease in adults with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk Res. 2019;79:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leonard J, Kosaka Y, Malla P, et al. Concomitant use of a dual ABL/Src kinase inhibitor eliminates the in vitroefficacy of blinatumomab against Ph+ ALL. Blood 2021;137(7):939-944.

    Google Scholar 

  81. Viardot A, Goebeler ME, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood. 2016;127:1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lussana F, Gritti G, Rambaldi A. Immunotherapy of acute lymphoblastic leukemia and lymphoma with T cell-redirected bispecific antibodies. J Clin Oncol. 2021;39:444–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Schuster FR, Stanglmaier M, Woessmann W, et al. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies. Br J Haematol. 2015;169:90–102.

    Article  CAS  PubMed  Google Scholar 

  84. Bannerji R, Allan J, Arnason J, et al. Clinical activity of REGN1979, a bispecific human, anti-CD20 x anti-CD3 antibody, in patients with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL). Blood. 2019;134

    Google Scholar 

  85. Hutchings M, Iacoboni G, Morschhauseer F, et al. CD20-Tcb (RG6026), a novel “2:1” format T-cell-engaging bispecific antibody, induces complete remissions in relapsed/refractory B-cell non-Hodgkin’s lymphoma: preliminary results from a phase I first in human trial. Blood. 2018;132

    Google Scholar 

  86. Patel K, Michot J, Chanan A, et al. Preliminary safety and anti-tumor activity of XmAb13676, an anti-CD20 x anti-CD3 bispecific antibody, in patients with relapsed/refractory non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood. 2019;134

    Google Scholar 

  87. Schuster S, Bartlett N, Assouline S, et al. Mosunetuzumab induces complete remissions in poor prognosis non-Hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-cell (CAR-T) therapies, and is active in treatment through multiple lines. Blood. 2019;134

    Google Scholar 

  88. Vadakekolathu J, Lai C, Reeder S, et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020;4:5011–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Uy G, Aldoss I, Foster M, et al. Flotetuzumab, an investigational CD123 x CD3 bispecific Dart® protein, in salvage therapy for primary refractory and early relapsed acute myeloid leukemia (AML) patients. Blood. 2019;134

    Google Scholar 

  90. Uy G, Rettig MP, Vey N, et al. Phase 1 cohort expansion of Flotetuzumab, a CD123×CD3 bispecific Dart® protein in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2018;132

    Google Scholar 

  91. Friedrich M, Henn A, Raum T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1549–57.

    Article  CAS  PubMed  Google Scholar 

  92. Laszlo GS, Gudgeon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brauchle B, Goldstein RL, Karbowski CM, et al. Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19:1875–88.

    Article  CAS  PubMed  Google Scholar 

  94. Garfall A, Usmani S, Mateos M-V, et al. Updated phase 1 results of Teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136

    Google Scholar 

  95. Usmani S, Mateos M, Nahi H, et al. Phase I study of teclistamab, a humanized B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed/refractory multiple myeloma (R/R MM). J Clin Oncol. 2020;38

    Google Scholar 

  96. Pillarisetti K, Powers G, Luistro L, et al. Teclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Adv. 2020;4:4538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Raje N, Jakubowiak A, Gasparetto C, et al. Safety, clinical activity, pharmacokinetics, and pharmacodynamics from a phase I study of PF-06863135, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;134

    Google Scholar 

  98. Cooper D, Madduri D, Lentzsch S, et al. Safety and preliminary clinical activity of REGN5458, an anti-Bcma x anti-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma. Blood. 2019;134

    Google Scholar 

  99. Topp M, Duell J, Zugmaier G, et al. Evaluation of AMG 420, an anti-BCMA bispecific T-cell engager (BiTE) immunotherapy, in R/R multiple myeloma (MM) patients: updated results of a first-in-human (FIH) phase I dose escalation study. J Clin Oncol. 2019;37

    Google Scholar 

  100. Buelow B, Choudry P, Clarke S, et al. Pre-clinical development of TNB-383B, a fully human T-cell engaging bispecific antibody targeting BCMA for the treatment of multiple myeloma. J Clin Oncol. 2018;36

    Google Scholar 

  101. Rodriguez C, D’Souza A, Shah N, et al. Initial results of a phase I study of TNB-383B, a BCMA × CD3 bispecific T-cell redirecting antibody, in relapsed/refractory multiple myeloma. Blood. 2020;136

    Google Scholar 

  102. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kebenko M, Goebeler ME, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE(R)) antibody construct, in patients with refractory solid tumors. Onco Targets Ther. 2018;7:e1450710.

    Google Scholar 

  104. Kroesen BJ, Nieken J, Sleijfer DT, et al. Approaches to lung cancer treatment using the CD3 x EGP-2-directed bispecific monoclonal antibody BIS-1. Cancer Immunol Immunother. 1997;45:203–6.

    Article  CAS  PubMed  Google Scholar 

  105. Segal N, Saro J, Melero I, et al. Phase I studies of the novel carcinoembryonic antigen T-cell bispecific (CEA-CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients (pts) with metastatic colorectal cancer (mCRC). Ann Oncol. 2017;28:v134.

    Article  Google Scholar 

  106. Tabernero J, Melero I, Ros W, et al. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2017;35:3002.

    Article  Google Scholar 

  107. Moek K, Fiedler W, von Einem J, et al. Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion (cIV) for relapsed/refractory gastrointestinal (GI) adenocarcinoma. Ann Oncol. 2018;29:viii139–40.

    Google Scholar 

  108. Pishvaian M, Morse MA, McDevitt J, et al. Phase 1 dose escalation study of MEDI-565, a bispecific T-cell engager that targets human carcinoembryonic antigen, in patients with advanced gastrointestinal adenocarcinomas. Clin Colorectal Cancer. 2016;15:345–51.

    Article  PubMed  Google Scholar 

  109. Giffin MJ, Cooke K, Lobenhofer EK, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res. 2021;27:1526–37.

    Article  CAS  PubMed  Google Scholar 

  110. Haense N, Atmaca A, Pauligk C, et al. A phase I trial of the trifunctional anti Her2 x anti CD3 antibody ertumaxomab in patients with advanced solid tumors. BMC Cancer. 2016;16:420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kiewe P, Hasmuller S, Kahlert S, et al. Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res. 2006;12:3085–91.

    Article  CAS  PubMed  Google Scholar 

  112. Hummel H, Kufer P, Grullich C, et al. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting bispecific T cell engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37

    Google Scholar 

  113. Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, a TCR/anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res. 2020;26:5869–78.

    Article  CAS  PubMed  Google Scholar 

  114. Blumenschein G, Davar D, Gutierrez R, et al. A phase I/II first-in-human study of a novel anti-MAGE-A4 TCR/anti-CD3 bispecific (IMC-C103C) as monotherapy and in combination with atezolizumab in HLA-A*02:01-positive patients with MAGE-A4-positive advanced solid tumors (IMC-C103C-101). J Clin Oncol. 2020;38

    Google Scholar 

  115. Schmohl JU, Felices M, Oh F, et al. Engineering of anti-CD133 Trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res Treat. 2017;49:1140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schmohl JU, Felices M, Todhunter D, Taras E, Miller JS, Vallera DA. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget. 2016;7:73830–44.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gleason MK, Verneris MR, Todhunter DA, et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther. 2012;11:2674–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vallera DA, Ferrone S, Kodal B, et al. NK-cell-mediated targeting of various solid tumors using a B7-H3 tri-specific killer engager in vitro and in vivo. Cancers (Basel). 2020;12

    Google Scholar 

  119. Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177:1701–13. e16

    Article  CAS  PubMed  Google Scholar 

  120. Felices M, Kodal B, Hinderlie P, et al. Novel CD19-targeted TriKE restores NK cell function and proliferative capacity in CLL. Blood Adv. 2019;3:897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cheng Y, Zheng X, Wang X, et al. Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers. Cancer Biol Med. 2020;17:1026–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123:3016–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wiernik A, Foley B, Zhang B, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res. 2013;19:3844–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Arvindam US, van Hauten PMM, Schirm D, et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia. 2020;

    Google Scholar 

  125. Bartlett NL, Herrera AF, Domingo-Domenech E, et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2020;136:2401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Borghaei H, Alpaugh RK, Bernardo P, et al. Induction of adaptive anti-HER2/neu immune responses in a phase 1B/2 trial of 2B1 bispecific murine monoclonal antibody in metastatic breast cancer (E3194): a trial coordinated by the eastern cooperative oncology group. J Immunother. 2007;30:455–67.

    Article  CAS  PubMed  Google Scholar 

  127. Weiner LM, Clark JI, Davey M, et al. Phase I trial of 2B1, a bispecific monoclonal antibody targeting c-erbB-2 and Fc gamma RIII. Cancer Res. 1995;55:4586–93.

    CAS  PubMed  Google Scholar 

  128. Liu J, Yang S, Cao B, et al. Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes. J Hematol Oncol. 2021;14:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vallera DA, Zhang B, Gleason MK, et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother Radiopharm. 2013;28:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rothe A, Jachimowicz RD, Borchmann S, et al. The bispecific immunoligand ULBP2-aCEA redirects natural killer cells to tumor cells and reveals potent anti-tumor activity against colon carcinoma. Int J Cancer. 2014;134:2829–40.

    Article  CAS  PubMed  Google Scholar 

  131. Han Y, Sun F, Zhang X, et al. CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy. J Cancer Res Clin Oncol. 2019;145:1179–90.

    Article  CAS  PubMed  Google Scholar 

  132. Nitta T, Sato K, Yagita H, Okumura K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet. 1990;335:368–71.

    Article  CAS  PubMed  Google Scholar 

  133. Lum LG, Thakur A, Pray C, et al. Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin’s lymphoma: a pilot study. Bone Marrow Transplant. 2014;49:73–9.

    Article  CAS  PubMed  Google Scholar 

  134. Lamers CH, Bolhuis RL, Warnaar SO, Stoter G, Gratama JW. Local but no systemic immunomodulation by intraperitoneal treatment of advanced ovarian cancer with autologous T lymphocytes re-targeted by a bi-specific monoclonal antibody. Int J Cancer. 1997;73:211–9.

    Article  CAS  PubMed  Google Scholar 

  135. Lum LG, Thakur A, Liu Q, et al. CD20-targeted T cells after stem cell transplantation for high risk and refractory non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2013;19:925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lum LG, Thakur A, Al-Kadhimi Z, et al. Targeted T-cell therapy in stage IV breast cancer: a phase I clinical trial. Clin Cancer Res. 2015;21:2305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vaishampayan U, Thakur A, Rathore R, Kouttab N, Lum LG. Phase I study of anti-CD3 x anti-Her2 bispecific antibody in metastatic castrate resistant prostate cancer patients. Prostate Cancer. 2015;2015:285193.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lum LG, Thakur A, Choi M, et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Onco Targets Ther. 2020;9:1773201.

    Google Scholar 

  139. Lum LG, Thakur A, Elhakiem A, Alameer L, Dinning E, Huang M. Anti-CS1 x anti-CD3 bispecific antibody (BiAb)-armed anti-CD3 activated T cells (CS1-BATs) kill CS1(+) myeloma cells and release Type-1 cytokines. Front Oncol. 2020;10:544.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Thakur A, Scholler J, Schalk DL, June CH, Lum LG. Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. J Cancer Res Clin Oncol. 2020;146:2007–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blanco B, Ramirez-Fernandez A, Alvarez-Vallina L. Engineering immune cells for in vivo secretion of tumor-specific T cell-redirecting bispecific antibodies. Front Immunol. 2020;11:1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood. 2018;131:30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iwahori K, Kakarla S, Velasquez MP, et al. Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells. Mol Ther. 2015;23:171–8.

    Article  CAS  PubMed  Google Scholar 

  144. Blanco B, Holliger P, Vile RG, Alvarez-Vallina L. Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells. J Immunol. 2003;171:1070–7.

    Article  CAS  PubMed  Google Scholar 

  145. Compte M, Blanco B, Serrano F, et al. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther. 2007;14:380–8.

    Article  CAS  PubMed  Google Scholar 

  146. Velasquez MP, Torres D, Iwahori K, et al. T cells expressing CD19-specific engager molecules for the immunotherapy of CD19-positive malignancies. Sci Rep. 2016;6:27130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu X, Barrett DM, Jiang S, et al. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J. 2016;6:e430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bonifant CL, Szoor A, Torres D, et al. CD123-engager T cells as a novel immunotherapeutic for acute myeloid leukemia. Mol Ther. 2016;24:1615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krawczyk E, Zolov SN, Huang K, Bonifant CL. T-cell activity against AML improved by dual-targeted T cells stimulated through T-cell and IL7 receptors. Cancer Immunol Res. 2019;7:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.

    Article  CAS  PubMed  Google Scholar 

  151. Gardell JL, Matsumoto LR, Chinn H, et al. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. J Immunother Cancer. 2020;8

    Google Scholar 

  152. Compte M, Cuesta AM, Sanchez-Martin D, et al. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells. 2009;27:753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Szoor A, Vaidya A, Velasquez MP, et al. T cell-activating mesenchymal stem cells as a biotherapeutic for HCC. Mol Ther Oncolytics. 2017;6:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stadler CR, Bahr-Mahmud H, Celik L, et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med. 2017;23:815–7.

    Article  CAS  PubMed  Google Scholar 

  155. Pang X, Ma F, Zhang P, et al. Treatment of human B-cell lymphomas using Minicircle DNA vector expressing anti-CD3/CD20 in a mouse model. Hum Gene Ther. 2017;28:216–25.

    Article  CAS  PubMed  Google Scholar 

  156. Perales-Puchalt A, Duperret EK, Yang X, et al. DNA-encoded bispecific T cell engagers and antibodies present long-term antitumor activity. JCI Insight. 2019;4

    Google Scholar 

  157. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 2019;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fajardo CA, Guedan S, Rojas LA, et al. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Res. 2017;77:2052–63.

    Article  CAS  PubMed  Google Scholar 

  159. Freedman JD, Duffy MR, Lei-Rossmann J, et al. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res. 2018;78:6852–65.

    Article  CAS  PubMed  Google Scholar 

  160. Speck T, Heidbuechel JPW, Veinalde R, et al. Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res. 2018;24:2128–37.

    Article  CAS  PubMed  Google Scholar 

  161. Zebley CC, Gottschalk S, Youngblood B. Rewriting history: epigenetic reprogramming of CD8(+) T cell differentiation to enhance immunotherapy. Trends Immunol. 2020;41:665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Osada T, Patel SP, Hammond SA, Osada K, Morse MA, Lyerly HK. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol Immunother. 2015;64:677–88.

    Article  CAS  PubMed  Google Scholar 

  163. Geiger M, Stubenrauch KG, Sam J, et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nat Commun. 2020;11:3196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Trang VH, Zhang X, Yumul RC, et al. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol. 2019;37:761–5.

    Article  CAS  PubMed  Google Scholar 

  165. Desnoyers LR, Vasiljeva O, Richardson JH, et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med. 2013;5:207ra144.

    Article  PubMed  CAS  Google Scholar 

  166. Banaszek A, Bumm TGP, Nowotny B, et al. On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nat Commun. 2019;10:5387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Kauer J, Horner S, Osburg L, et al. Tocilizumab, but not dexamethasone, prevents CRS without affecting antitumor activity of bispecific antibodies. J Immunother Cancer. 2020;8

    Google Scholar 

  168. Khadka RH, Sakemura R, Kenderian SS, Johnson AJ. Management of cytokine release syndrome: an update on emerging antigen-specific T cell engaging immunotherapies. Immunotherapy. 2019;11:851–7.

    Article  CAS  PubMed  Google Scholar 

  169. Topp MS, Gokbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120:5185–7.

    Article  CAS  PubMed  Google Scholar 

  170. Goebeler ME, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct Blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34:1104–11.

    Article  CAS  PubMed  Google Scholar 

  171. Stanglmaier M, Faltin M, Ruf P, Bodenhausen A, Schroder P, Lindhofer H. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 x anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int J Cancer. 2008;123:1181–9.

    Article  CAS  PubMed  Google Scholar 

  172. Buhmann R, Michael S, Juergen H, Horst L, Peschel C, Kolb HJ. Immunotherapy with FBTA05 (Bi20), a trifunctional bispecific anti-CD3 x anti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating phase I/II-trial. J Transl Med. 2013;11:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Buhmann R, Simoes B, Stanglmaier M, et al. Immunotherapy of recurrent B-cell malignancies after allo-SCT with Bi20 (FBTA05), a trifunctional anti-CD3 × anti-CD20 antibody and donor lymphocyte infusion. Bone Marrow Transplant. 2009;43:383–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paulina Velasquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Epperly, R., Gottschalk, S., Velasquez, M.P. (2022). Biology and Clinical Evaluation of T/NK Cell Engagers. In: Ghobadi, A., DiPersio, J.F. (eds) Gene and Cellular Immunotherapy for Cancer . Cancer Drug Discovery and Development. Humana, Cham. https://doi.org/10.1007/978-3-030-87849-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87849-8_17

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-87848-1

  • Online ISBN: 978-3-030-87849-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics