Skip to main content

Advertisement

Log in

CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

APC:

Allophycocyanin

BiTE:

Bispecific T cell engaging

CEA:

Carcinoembryonic antigen

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

EDTA:

Ethylenediaminetetraacetic acid

FITC:

Fluorescein isocyanate

mAb:

Monoclonal antibody

MDSC:

Myeloid-derived suppressor cells

MFI:

Mean fluorescence intensity

NOD/SCID:

Non-obese diabetic/severe combined immunodeficiency

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed cell death 1

PD-L1:

Programmed death-ligand 1

PE:

Phycoerythrin

PerCP:

Peridinin chlorophyll protein

Treg:

Regulatory T cell

References

  1. Pagès F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    Article  PubMed  Google Scholar 

  2. Nomi T, Sho M, Akahori T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  3. Mosolits S, Ullenhag G, Mellstedt H (2005) Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results. Ann Oncol 16:847–862

    Article  CAS  PubMed  Google Scholar 

  4. Karlsson M, Marits P, Dahl K et al (2010) Pilot study of sentinel-node-based adoptive immunotherapy in advanced colorectal cancer. Ann Surg Oncol 17:1747–1757

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kobari M, Egawa S, Shibuya K, Sunamura M, Saitoh K, Matsuno S (2000) Effect of intraportal adoptive immunotherapy on liver metastases after resection of pancreatic cancer. Br J Surg 87:43–48

    Article  CAS  PubMed  Google Scholar 

  6. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26:332

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a t cell-engaging antibody. Science 321:974–977

    Article  CAS  PubMed  Google Scholar 

  8. Klinger M, Brandl C, Zugmaier G et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119:6226–6233

    Article  CAS  PubMed  Google Scholar 

  9. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81

    Article  CAS  PubMed  Google Scholar 

  10. Lutterbuese R, Raum T, Kischel R, Lutterbuese P, Schlereth B, Schaller E, Mangold S, Rau D, Meier P, Kiener PA, Mulgrew K, Oberst MD, Hammond SA, Baeuerle PA, Kufer P (2009) Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J Immunother 32:341–352

    Article  CAS  PubMed  Google Scholar 

  11. Lutterbuese R, Raum T, Kischel R et al (2009) Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J Immunother 32:341

    Article  CAS  PubMed  Google Scholar 

  12. Osada T, Hsu D, Hammond S et al (2009) Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br J Cancer 102:124–133

    Article  PubMed Central  PubMed  Google Scholar 

  13. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Derynck R, Akhurst RJ, Balmain A (2001) TGF-[beta] signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  15. Ferrone S, Whiteside TL (2007) Tumor microenvironment and immune escape. Surg Oncol Clin N Am 16:755–774

    Article  PubMed  Google Scholar 

  16. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    Article  CAS  PubMed  Google Scholar 

  17. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245

    Article  CAS  PubMed  Google Scholar 

  18. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366(26):2517–2519

    Article  CAS  PubMed  Google Scholar 

  21. Brischwein K, Schlereth B, Guller B et al (2006) MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol 43:1129–1143

    Article  CAS  PubMed  Google Scholar 

  22. Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944

    Article  CAS  PubMed  Google Scholar 

  23. Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, Oh S, Shin JG, Yao S, Chen L, Choi IH (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580(3):755–762

    Article  CAS  PubMed  Google Scholar 

  24. Brischwein K, Parr L, Pflanz S et al (2007) Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 30(8):798–807

    Article  CAS  PubMed  Google Scholar 

  25. Mathieu M, Cotta-Grand N, Daudelin JF, Thébault P, Labrecque N (2013) Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol 91(1):82–88

    Article  CAS  PubMed  Google Scholar 

  26. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Keir ME, Francisco LM, Sharpe AH (2007) PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 19:309–314

    Article  CAS  PubMed  Google Scholar 

  28. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    CAS  PubMed  Google Scholar 

  29. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ha SJ, Mueller SN, Wherry EJ et al (2008) Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J Exp Med 205(3):543–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y, Tan Y, Wang S (2014) PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer 111(7):1391–1399

    Article  CAS  PubMed  Google Scholar 

  32. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  Google Scholar 

  33. Ghiotto M, Gauthier L, Serriari N, Pastor S, Truneh A, Nunès JA, Olive D (2010) PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol 22(8):651–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Topp MS, Gökbuget N, Zugmaier G et al (2012) Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120:5185–5187

    Article  CAS  PubMed  Google Scholar 

  36. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a Grant from MedImmune LLC to Takuya Osada.

Conflict of interest

Scott A. Hammond is an employee of MedImmune LCC, which supplied CEA BiTE for this study. The other authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Osada.

Additional information

BiTE ® is a registered trademark of Amgen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osada, T., Patel, S.P., Hammond, S.A. et al. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol Immunother 64, 677–688 (2015). https://doi.org/10.1007/s00262-015-1671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1671-y

Keywords

Navigation