Skip to main content

Management of Sewage Sludge for Environmental Sustainability

  • Chapter
  • First Online:
Sustainable Management and Utilization of Sewage Sludge

Abstract

Sewage sludge management is critical for reducing environmental pollution and its negative impacts on human health. Waste and wastewater are generally generated in large quantities in cities. Origin, collection process, and treatment all influence the quality of these sewage sludge wastes. Consequently, these wastes end up in a wide variety of places. Stabilization and processing results in the production of waste materials that may contain a variety of organic components. This method of controlling has the potential to contaminate the soil with unknown organic compounds since it usually involves dumping processed sludge on the ground. Thermal processing of raw sewage sludge, on the other hand, virtually eliminates this possibility. Most of the organic matter is converted to a basic, mineralized state of sludge. Perhaps the most urgent issue is sewage sludge ash contaminated with heavy metals. Apart from organic components, identifying toxic metals in sewage sludge ashes is substantially easier. For assessing environmentally safe sewage sludge from treated, processed and management process, chemical testing and analysis of sewage sludge can be extremely helpful and beneficial. Numerous analytical techniques are expected to contribute to the development and implementation of novel economic and environmentally sound methods of sewage sludge reuse consequently. Each treatment plant should have its own sewage sludge management system. Only then any management strategies can be considered ecologically and economically feasible. Sludge management gives comprehensive information on the treatment, reuse, and disposal of sludge. Thus, it is important to know the contaminants present in sludge and possible way in order to overcome the environmental risks and adopting acceptable possible treatment of sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu Bakar R, Ramahsamy K, Ishak C (2008) Characterization of Malaysian sewage sludge and nitrogen mineralization in three soils treated with sewage sludge. Malaysian J Soil Sci 12:103–112

    Google Scholar 

  • Agoro MA, Adeniji AO, Adefisoye MA, Okoh OO (2020) Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in eastern cape province, south africa. Water 12(10):2746. https://doi.org/10.3390/w12102746

    Article  CAS  Google Scholar 

  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J et al (2015) Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag 40:44–52. https://doi.org/10.1016/j.wasman.2015.01.027

    Article  CAS  Google Scholar 

  • Andreoli CV, Von Sperling M, Fernandes F, Ronteltap M (2017) Sludge treatment and disposal. IWA Publishing

    Google Scholar 

  • Arthurson V (2008) Proper sanitization of sewage sludge: a critical issue for a sustainable society. Appl Environ Microbiol 74(17):5267–5275. https://doi.org/10.1128/AEM.00438-08

    Article  CAS  Google Scholar 

  • Ashmawy AM, Ibrahim HS, Moniem SMA, Saleh TS (2012) Immobilization of some metals in contaminated sludge by zeolite prepared from local materials. Toxicol Environ Chem 94(9):1657–1669. https://doi.org/10.1080/02772248.2012.727819

    Article  CAS  Google Scholar 

  • Asplund K, Nurmi E (1991) The growth of salmonellae in tomatoes. Int J Food Microbiol 13:177–181

    CAS  Google Scholar 

  • Awasthi MK, Wang Q, Ren X, Zhao J, Huang H, Awasthi SK, Lahori AH, Li R, Zhou L, Zhang Z (2016) Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresour Technol 219:270–280

    CAS  Google Scholar 

  • Babel S, Del Mundo Dacera D (2006) Heavy metal removal from contaminated sludge for land application: a review. Waste Manag 26:988–1004

    CAS  Google Scholar 

  • Babel S, Sae-Tang J, Pecharaply A (2009) Anaerobic co-digestion of sewage and brewery sludge for biogas production and land application. Int J Environ Sci Technol 6(1):131–140. https://doi.org/10.1007/BF03326067

    Article  CAS  Google Scholar 

  • Balasubramani A, Rifai HS (2015) Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sewage sludge: congener patterns, toxic equivalency and comparison with effluent concentrations and toxic equivalency. Water Resour Manag 8:399

    Google Scholar 

  • Baran S, Oleszczuk P (2003) The concentration of polycyclic aromatic hydrocarbons in sewage sludge in relation to the amount and origin of purified sewage. Pol J Environ Stud 12(5):523–530

    CAS  Google Scholar 

  • Barret M, Carrère H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or cometabolism limit their biodegradation? Water Res 44(13):3797–3806. https://doi.org/10.1016/j.watres.2010.04.031

    Article  CAS  Google Scholar 

  • Benabdallah El-Hadj T, Dosta J, Mata-Alvarez J (2006) Biodegradation of PAH and DEHP micro-pollutants in mesophilic and thermophilic anaerobic sewage sludge digestion. Water Sci Technol 53(8):99–107. https://doi.org/10.2166/wst.2006.240

    Article  CAS  Google Scholar 

  • Benmoussa H, Tyagi RD, Campbell PGC (1997) Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor. Water Res 31(10):2638–2654. https://doi.org/10.1016/S0043-1354(97)00112-7

    Article  CAS  Google Scholar 

  • Bibby K, Peccia J (2013) Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ Sci Technol 47:1945–1951

    CAS  Google Scholar 

  • Bloem E, Albihn A, Elving J, Hermann L, Lehmann L, Sarvi M, Schaaf T, Schick J, Turtola E, Ylivainio K (2017) Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: a review. Sci Total Environ 607:225–242

    Google Scholar 

  • Bomboi M, Hernandez A (1991) Hydrocarbons in urban runoff: their contribution to the wastewaters. Water Res 25:557–565

    CAS  Google Scholar 

  • Bora AP, Gupta DP, Durbha KS (2020) Sewage sludge to biofuel: a review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel 259:116262. https://doi.org/10.1016/jfuel.2019.116262

    Article  CAS  Google Scholar 

  • Bosch A, Lucena F, Jofre J (1986) Fate of Human Enteric Viruses (Rotaviruses and Entero Viruses) in Sewage after Primary Sedimentation. Water Sci Technol 18(10):47–52. https://doi.org/10.2166/wst.1986.0110

    Article  CAS  Google Scholar 

  • Busetti F, Heitz A, Cuomo M, Badoer S, Traverso P (2006) Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. J Chromatogr A 1102(1–2):104–115. https://doi.org/10.1016/j.chroma.2005.10.013

    Article  CAS  Google Scholar 

  • Cano R, Pérez-Elvira SI, Fdz-Polanco F (2015) Energy feasibility study of sludge pretreatments: a review. Appl Energy 149:176–185

    CAS  Google Scholar 

  • Cao Y, Pawłowski A (2012) Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew Sust EnergRev 16:1657–1665

    CAS  Google Scholar 

  • Chaoua S, Boussaa S, Khadra A, Boumezzough A (2018) Efficiency of two sewage treatment systems (activated sludge and natural lagoons) for helminth egg removal in Morocco. J Infect Public Health 11(2):197–202

    Google Scholar 

  • Chen C-F, Ju Y-R, Lim YC, Hsieh S-L, Tsai M-L, Sun P-P, Katiyar R, Chen C-W, Dong C-D (2019) Determination of polycyclic aromatic hydrocarbons in sludge from water and wastewater treatment plants by GC-MS. Int J Environ Res Public Health 16(14):2604. https://doi.org/10.3390/ijerph16142604

    Article  CAS  Google Scholar 

  • Clarke BO, Smith SR (2011) Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226–247

    CAS  Google Scholar 

  • Cooke WB (1970) Fungi associated with the activated-sludge process of sewage treatment at the Lebanon, Ohio, sewage-treatment plant. http://hdl.handle.net/1811/5536

  • Corrêa Medeiros R, Antonio Daniel L (2018) Quantification and analysis of the viability of (oo) cysts of pathogenic protozoa in sewage sludge. Acta Scientiar Technol 40

    Google Scholar 

  • Da Rocha MCV, BarÉS ME, Braga MCB (2016) Quantification of viable helminth eggs in samples of sewage sludge. Water Res 103:245–255

    Google Scholar 

  • Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA (2021) Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ Pollut 273:116515. https://doi.org/10.1016/j.envpol.2021.116515

    Article  CAS  Google Scholar 

  • EC (2000) European Commission working document on sludge. In: Third Draft, Brussels

    Google Scholar 

  • EC (2008) Environmental, economic and social impacts of the use of sewage sludge on land. Final report. Part I: overview report. In: Milieu Ltd, W. A. R. F. T. E. C, editor. DG Environment Under Study Contract DG ENV.G.4/ETU/2008/0076R (ed.)

    Google Scholar 

  • Ellis S, Tyrrel S, O'leary E, Richards K, Griffiths B, Ritz K (2018) Proportion of sewage sludge to soil influences the durvival of Salmonella Dublin and Escherichia coli. Clean Soil Air Water 46:1800042

    Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-new tricks for an old dog, vol 10. IntechOpen, London. https://doi.org/10.5772/intechopen.82511

    Chapter  Google Scholar 

  • Environmental Protection Agency- USA (1979) Design of wastewater treatment facilities major systems. Environmental Protection Agency, Office of Water Program Operations

    Google Scholar 

  • Eriksson E, Christensen N, Schmidt JE, Ledin A (2008) Potential priority pollutants in sewage sludge. Desalination 226:371–388

    CAS  Google Scholar 

  • EUROSTAT (2020) Regional statistics: reference guide. Luxembourg. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ww_spd&lang=en#. Database accessed 24 February 2020

  • Fang W, Delapp RC, Kosson DS, Van Der Sloot HA, Liu J (2017) Release of heavy metals during long-term land application of sewage sludge compost: percolation leaching tests with repeated additions of compost. Chemosphere 169:271–280

    CAS  Google Scholar 

  • FAO (2020) AQUASTAT Core Database. Food and Agriculture Organization of the United Nations. http://www.fao.org/nr/water/aquastat/wastewater/index.stm. Database accessed 24 February 2020

  • Feizi M, Jalali M, Renella G (2018) Nanoparticles and modified clays influenced distribution of heavy metals fractions in a light-textured soil amended with sewage sludges. J Hazard Mater 343:208–219. https://doi.org/10.1016/j.jhazmat.2017.09.027

    Article  CAS  Google Scholar 

  • Fernández J, Palza C, García-Gil JC, Polo A (2009) Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge. Appl Soil Ecol 42:18–24

    Google Scholar 

  • Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16(6):1060. https://doi.org/10.3390/ijerph16061060

    Article  CAS  Google Scholar 

  • Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ (2017) The presence of contaminations in sewage sludge—the current situation. J Environ Manag 203:1126–1136

    CAS  Google Scholar 

  • Filali-Meknassi Y, Tyagi RD, Narasiah KS (2000) Simultaneous sewage sludge digestion and metal leaching: effect of aeration. Process Biochem 36(3):263–273. https://doi.org/10.1016/S0032-9592(00)00213-2

    Article  CAS  Google Scholar 

  • Frąc M, Oszust K, Lipiec J, Jezierska-Tys S, Nwaichi EO (2014) Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation. Int J Environ Res Public Health 11:8891–8908

    Google Scholar 

  • Frišták V, Soja G (2015) Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechnologica et Chimica 14:104

    Google Scholar 

  • Galler H, Feierl G, Petternel C, Reinthaler FF, Haas D, Habib J, Kittinger C, Luxner J, Zarfel G (2018) Multiresistant bacteria isolated from activated sludge in Austria. Int J Environ Res Public Health 15:479

    Google Scholar 

  • Gantzer C, Gaspard P, Galvez L, Huyard A, Dumouthier N, Schwartzbrod J (2001) Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Res 35(16):3763–3770. https://doi.org/10.1016/S0043-1354(01)00105-1

    Article  CAS  Google Scholar 

  • García H, El Zauahre M, Morán H, Acosta Y, Senior A, Fernández N (2006) Comparative analysis of two digestion techniques for the determination of heavy metals in sewage sludge. Multiciencias 6:234–243

    Google Scholar 

  • Garrido-Baserba MMSPG, Molinos-Senante M, Abelleira-Pereira JM, Fdez-Güelfo LA, Poch M, Hernández-Sancho F (2015) Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J Clean Prod 107:410–419. https://doi.org/10.1016/j.jclepro.2014.11.021

    Article  CAS  Google Scholar 

  • Gondek K, Baran A, Kopeć M (2014) The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals. Chemosphere 117:33–39. https://doi.org/10.1016/j.chemosphere.2014.05.032

    Article  CAS  Google Scholar 

  • Grosser A (2018) Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 143:488–499

    CAS  Google Scholar 

  • Guzmán C, Jofre J, Blanch AR, Lucena F (2007) Development of a feasible method to extract somatic coliphages from sludge, soil and treated biowaste. J Virol Methods 144(1–2):41–48. https://doi.org/10.1016/j.jviromet.2007.03.017

    Article  CAS  Google Scholar 

  • Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367:481–497

    CAS  Google Scholar 

  • Haynes RJ, Murtaza G, Naidu R (2009) Inorganic and organic constituents and contaminants of biosolids: implications for land application. Adv Agron 104:165–267

    CAS  Google Scholar 

  • Healy MG, Fenton O, Forrestal PJ, Danaher M, Brennan RB, Morrison L (2016) Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges. Waste Manag 48:404–408. https://doi.org/10.1016/j.wasman.2015.11.028

    Article  CAS  Google Scholar 

  • Hjorth M, Nielsen AM, Nyord T, Hansen MN, Nissen P, Sommer SG (2009) Nutrient value, odour emission and energy production of manure as influenced by anaerobic digestion and separation. Agron Sustain Dev 29(2):329–338

    Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92(1):223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

    Article  CAS  Google Scholar 

  • Houillon G, Jolliet O (2005) Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. J Clean Prod 13:287–299

    Google Scholar 

  • Huang K, Mao Y, Zhao F, Zhang X-X, Ju F, Ye L, Wang Y, Li B, Ren H, Zhang T (2018) Free-living bacteria and potential bacterial pathogens in sewage treatment plants. Appl Microbiol Biotechnol 102:2455–2464

    CAS  Google Scholar 

  • Ju JH, Lee IS, Sim WJ, Eun H, Oh JE (2009) Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea. Chemosphere 74(3):441–447. https://doi.org/10.1016/j.chemosphere.2008.09.059

    Article  CAS  Google Scholar 

  • Kacprzak M, Neczaj E, Fijałkowski K, Grobelak A, Grosser A, Worwag M, Rorat A, Brattebo H, Almås Å, Singh BR (2017) Sewage sludge disposal strategies for sustainable development. Environ Res 156:39–46. https://doi.org/10.1016/j.envres.2017.03.010

    Article  CAS  Google Scholar 

  • Khadhar 1S, Higashi T, Hamdi H, Matsuyama S, Charef A (2010) Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. J Hazard Mater 183(1–3):98–102. https://doi.org/10.1016/j.jhazmat.2010.06.112

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):686–692

    CAS  Google Scholar 

  • Khillare PS, Sattawan VK, Jyethi DS (2018) Profile of polycyclic aromatic hydrocarbons in digested sewage sludge. Environ Technol. https://doi.org/10.1080/09593330.2018.1512654

  • Khouja LBA, Cama V, Xiao L (2010) Parasitic contamination in wastewater and sludge samples in Tunisia using three different detection techniques. Parasitol Res 107:109–116

    Google Scholar 

  • Kończak M, Oleszczuk P (2018) Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci Total Environ 625:8–15

    Google Scholar 

  • Korzeniewska E (2011) Emission of bacteria and fungi in the air from wastewater treatment plants—a review. Front Biosci 3:393–407

    Google Scholar 

  • Krzyzanowski F Jr, De Souza Lauretto M, Nardocci AC, Sato MIZ, Razzolini MTP (2016) Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Sci Total Environ 568:66–74

    CAS  Google Scholar 

  • Kumar V, Chopra AK, Kumar A (2017) A review on sewage sludge (Biosolids) a resource for sustainable agriculture. Arch Agric Environ Sci 2(4):340–347. https://doi.org/10.26832/24566632.2017.020417

    Article  Google Scholar 

  • Kwarciak-Kozłowska A (2019) 15 - Co-composting of sewage sludge and wetland plant material from a constructed wetland treating domestic wastewater. In: Prasad MNV, de Campos Favas PJ, Vithanage M, Mohan SV (eds) Industrial and municipal sludge. Butterworth-Heinemann, pp 337–360. https://doi.org/10.1016/B978-0-12-815907-1.00015-5

    Chapter  Google Scholar 

  • LeBlanc RJ, Matthews P, Richard RP (2008) Global atlas of excreta. In: Wastewater sludge, and biosolids management: moving forward the sustainable and welcome uses of a global resource. United Nations Humans Settlements Program, Nairobi

    Google Scholar 

  • Lederer J, Rechberger H (2010) Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options. Waste Manag 30:1043–1056. https://doi.org/10.1016/j.wasman.2010.02.025

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. Routledge, pp 33–46. https://doi.org/10.4324/9780203762264

    Book  Google Scholar 

  • Leng L, Yuan X, Huang H, Jiang H, Chen X, Zeng G (2014) The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour Technol 167:144–150

    CAS  Google Scholar 

  • Li J, Luo G, Gao J, Yuan S, Du J, Wang Z (2014) Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in main urban area of Wuxi, China. Chem Ecol:1–28

    Google Scholar 

  • Liew C-S, Kiatkittipong W, Lim J-W, Lam M-K, Ho Y-C, Ho C-D, Ntwampe SKO, Mohamad M, Usman A (2021) Stabilization of heavy metals loaded sewage sludge: reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability. Chemosphere 277:130310. https://doi.org/10.1016/j.chemosphere.2021.130310

    Article  CAS  Google Scholar 

  • Liu T, Liu Z, Zheng Q, Lang Q, Xia Y, Peng N et al (2018) Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour Technol 247:282–290

    CAS  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862. https://doi.org/10.1016/j.watres.2011.11.058

    Article  CAS  Google Scholar 

  • Malińska K, Zabochnicka-Świątek M, Dach J (2014) Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol Eng 71:474–478

    Google Scholar 

  • Malińska K, Golańska M, Caceres R, Rorat A, Weisser P, Ślęzak E (2017) Biochar amendment for integrated composting and vermicomposting of sewage sludge–the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour Technol 225:206–214. https://doi.org/10.1016/j.biortech.2016.11.049

    Article  CAS  Google Scholar 

  • Manara P, Zabaniotou A (2012) Towards sewage sludge based biofuels via thermochemical conversion - a review. Renew Sustain Energy Rev 16:2566–2582. https://doi.org/10.1016/j.rser.2012.01.074

    Article  CAS  Google Scholar 

  • Manios SG, Konstantinidis N, Gounadaki AS, Skandamis PN (2013) Dynamics of low (1–4 cells) vs high populations of Listeria monocytogenes and Salmonella typhimurium in fresh-cut salads and their sterile liquid or solidified extracts. Food Control 29:318–327

    Google Scholar 

  • Maragkaki A, Vasileiadis I, Fountoulakis M, Kyriakou A, Lasaridi K, Manios T (2018) Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Manag 71:644–651

    CAS  Google Scholar 

  • Mateo-Sagasta J, Raschid-Sally L, Thebo A (2015) Global wastewater and sludge production, treatment, and use. In: Drechsel P, Qadir M, Wichelns D (eds) Wastewater: economic asset in an urbanizing world. Springer, Dordrecht, pp 15–38

    Google Scholar 

  • Matiasi TM (2012) Wastewater Management and reuse for sustainable development. Scholar J Agric Sci 2(11):269–276

    Google Scholar 

  • Metcalf E, Eddy P (1991) Wastewater engineering: treatment, disposal, reuse, 3rd edn. McGraw Hill, Singapore

    Google Scholar 

  • Metcalf, Inc, Tchobanoglous G, Burton FL, Stensel HD (2013) In: Metcalf E (ed) Wastewater engineering: treatment and resource recovery. McGraw-Hill Education

    Google Scholar 

  • Millner PD, Marsh PB, Snowden RB, Parr JF (1977) Occurrence of Aspergillus fumigatus during composting of sewage sludge. Appl Environ Microbiol 34(6):765–772. https://doi.org/10.1128/aem.34.6.765-772.1977

    Article  CAS  Google Scholar 

  • Moretti SML, Bertoncini EI, Vitti AC, Alleoni LRF, Abreu-Junior CH (2016) Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application. Environ Monit Assess 188(3):163. https://doi.org/10.1007/s10661-016-5170-1

    Article  CAS  Google Scholar 

  • Nafez AH, Nikaeen M, Kadkhodaie S et al (2015) Sewage sludge composting: quality assessment for agricultural application. Environ Monit Assess 187:709. https://doi.org/10.1007/s10661-015-4940-5

    Article  CAS  Google Scholar 

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492

    Google Scholar 

  • Novak JT (2006) Dewatering of sewage sludge. Dry Technol 24:1257–1262

    CAS  Google Scholar 

  • Opec FFID (2018) Wastewater Report 2018: the reuse opportunity. IWA, International Water Association

    Google Scholar 

  • Östman M, Lindberg RH, Fick J, Björn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328. https://doi.org/10.1016/j.watres.2017.03.011

    Article  CAS  Google Scholar 

  • Ozcan S, Tor A, Aydin ME (2013) Investigation on the levels of heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in sewage sludge samples and ecotoxicological testing. Clean Soil Air Water 41:411–418

    CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2008) Bioleaching of heavy metals from anaerobically digested sewage sludge. J Environ Sci Health A 43(4):402–411. https://doi.org/10.1080/10934520701795624

    Article  CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353. https://doi.org/10.1016/j.jenvman.2008.11.005

    Article  CAS  Google Scholar 

  • Peng W, Pivato A, Lavagnolo MC, Raga R (2018) Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate. Waste Manag 74:335–346

    CAS  Google Scholar 

  • Pradel M, Reverdy AL. Assessing GHG emissions from sludge treatment and disposal routes: the method behind GESTABoues tool. ORBIT2012, Global assessment for organic resources and waste management, Jun 2012, Rennes, France. 9 p. ffhal-00781673f

    Google Scholar 

  • Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO (2017) Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol 7:2106. https://doi.org/10.3389/fmicb.2016.02106

    Article  Google Scholar 

  • Reinthaler FF, Galler H, Feierl G, Haas D, Leitner E, Mascher F, Melkes A, Posch J, Pertschy B, Winter I (2013) Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J Water Health 11:13–20

    Google Scholar 

  • Rizzardini CB, Goi D (2014) Sustainability of domestic sewage sludge disposal. Sustainability 6(5):2424–2434. https://doi.org/10.3390/su6052424

    Article  CAS  Google Scholar 

  • Romdhana MH, Lecomte D, Ladevie B, Sablayrolles C (2009) Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Saf Environ Prot 87:377–386

    CAS  Google Scholar 

  • Rorat A, Kacprzak M (2017) Eco-innovations in sustainable waste management strategies for smart cities. In: Brdulak A, Brdulak H (eds) Happy city—how to plan and create the best livable area for the people. Springer International Publishing, Cham

    Google Scholar 

  • Rorat A, Suleiman H, Grobelak A, Grosser A, Kacprzak M, Płytycz B, Vandenbulcke F (2015) Interactions between sewage sludge-amended soil and earthworms—comparison between Eisenia fetida and Eisenia andrei composting species. Environ Sci Pollut Res 23:3026–3035

    Google Scholar 

  • Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M, Jelonek P, Vandenbulcke F, Kacprzak M (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353. https://doi.org/10.1016/j.jenvman.2016.10.062

    Article  CAS  Google Scholar 

  • Rorat A, Courtois P, Vandenbulcke F, Lemiere S (2019) Sanitary and environmental aspects of sewage sludge management. Emerging concerns and scope for resource recovery industrial and municipal sludge, pp 155–180

    Google Scholar 

  • Rouse JD (2013) Sustainability of wastewater treatment and excess sludge handling practices in the federated states of Micronesia. Sustainability 5:4183–4194

    Google Scholar 

  • Sabbahi S, Trad M, Ayed LB, Marzougui N (2018) Occurrence of intestinal parasites in sewage samples and efficiency of wastewater treatment systems in Tunisia. Water Qual Res J 53(2):86–101

    CAS  Google Scholar 

  • Salaudeen T, Okoh O, Agunbiade F, Okoh A (2018) Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa. Chemosphere 203:336–344. https://doi.org/10.1016/j.chemosphere.2018.03.176

    Article  CAS  Google Scholar 

  • Salihoglu NK, Salihoglu G, Tasdemir Y, Cindoruk SS, Yolsal D, Ogulmus R, Karaca G (2010) Comparison of polycyclic aromatic hydrocarbons levels in sludges from municipal and industrial wastewater treatment plants. Arch Environ Contam Toxicol 58(3):523–534. https://doi.org/10.1007/s00244-009-9389-5

    Article  CAS  Google Scholar 

  • Samolada M, Zabaniotou A (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag 34(2):411–420

    CAS  Google Scholar 

  • Sánchez-Monedero MA, Serramiá N, Civantos CG-O, Fernández-Hernández A, Roig A (2010) Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere 81:18–25

    Google Scholar 

  • Sánchez CH, Gutiérrez Á, Galindo JM, González-Weller D, Rubio C, Revert C et al (2017) Contenido de metales pesados en lodos de depuradora: estrategia de gestión para una isla oceánica. Revista de Salud Ambiental 17(1):3–9

    Google Scholar 

  • Schowanek D, David H, Francaviglia R, Hall J, Kirchmann H, Krogh PH, Schraepen N, Smith S, Wildemann T (2007) Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil. Regul Toxicol Pharmacol 49:245–259

    CAS  Google Scholar 

  • Seggiani M, Puccini M, Raggio G, Vitolo S (2012) Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier. Waste Manag 32:1826–1834. https://doi.org/10.1016/j.wasman.2012.04.018

    Article  CAS  Google Scholar 

  • Seiple TE, Coleman AM, Skaggs RL (2017) Municipal wastewater sludge as a sustainable bioresource in the United States. J Environ Manag 197:673–680. https://doi.org/10.1016/j.jenvman.2017.04.032

    Article  CAS  Google Scholar 

  • Shi W, Liu C, Ding D, Lei Z, Yang Y, Feng C, Zhang Z (2013) Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresour Technol 137:18–24. https://doi.org/10.1016/j.biortech.2013.03.106

    Article  CAS  Google Scholar 

  • Smith S (2009) Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos Trans A Math Phys Eng Sci 367:4005–4041

    CAS  Google Scholar 

  • Soda S, Iwai Y, Sei K, Shimoda Y, Ike M (2010) Model analysis of energy consumption and green house gas emission of sewage sludge treatment systems with sifferent processes and scales. Water Sci Technol 61(2):365–373

    CAS  Google Scholar 

  • Sogn TA, Dragicevic I, Linjordet R, Krogstad T, Eijsink VGH, Eich-Greatorex S (2018) Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int J Recycl Org Waste Agric 7:49–58

    Google Scholar 

  • Stefaniuk M, Tsang DC, Ok YS, Oleszczuk P (2018) A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. J Hazard Mater 349:27–34

    CAS  Google Scholar 

  • Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: survey results and implications. Environ Sci Technol 37(3):462–467. https://doi.org/10.1021/es020161y

    Article  CAS  Google Scholar 

  • Suleiman H, Rorat A, Grobelak A, Grosser A, Milczarek M, Płytycz B et al (2017) Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresour Technol 241:103–112. https://doi.org/10.1016/j.biortech.2017.05.104

    Article  CAS  Google Scholar 

  • Takaoka M, Oshita K, Okada M, Watanabe T, Tanida K (2018) Mercury behaviour in flue gas from sewage sludge incinerators and melting furnace. Water Sci Technol 2017(3):782–790. https://doi.org/10.2166/wst.2018.268

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering treatment and reuse. Metcalf and Eddy, McGraw Hill, NY. Technol 241:103–112

    Google Scholar 

  • Tozzoli R, Di Bartolo I, Gigliucci F, Brambilla G, Monini M, Vignolo E, Caprioli A, Morabito S (2017) Pathogenic Escherichia coli and enteric viruses in biosolids and related top soil improvers in Italy. J Appl Microbiol 122:239–247

    CAS  Google Scholar 

  • Tuefenkci S, Türkmen Ö, Sönmez F, Erdinc C, Sensoy S (2006) Effects of humic acid doses and aplication times on the plant growth, nutrient and heavy metal contents of lettuce grown on sewage sludge-applied soils. Fresenius Environ Bull 15(4):295–300

    Google Scholar 

  • Turlej T, Banaś M (2018) Sustainable management of sewage sludge. E3S Web Conf 49:00120

    Google Scholar 

  • Turolla A, Cattaneo M, Marazzi F, Mezzanotte V, Antonelli M (2018) Antibiotic resistant bacteria in urban sewage: role of full-scale wastewater treatment plants on environmental spreading. Chemosphere 191:761–769

    CAS  Google Scholar 

  • Tyagi VK, Lo SL (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sust Energ Rev 25:708–728. https://doi.org/10.1016/j.rser.2013.05.029

    Article  CAS  Google Scholar 

  • Tyagi RD, Couillard D, Tran F (1988) Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods. Environ Pollut 50(4):295–316. https://doi.org/10.1016/0269-7491(88)90194-7

    Article  CAS  Google Scholar 

  • Ukaogo PO, Ewuzie U, Onwuka CV (2020) 21 - Environmental pollution: causes, effects, and the remedies. In: Chowdhary P, Raj A, Verma D, Akhter Y (eds) Microorganisms for sustainable environment and health. Elsevier, pp 419–429

    Google Scholar 

  • United Nations (2012). World population prospects: the 2012 revision. United Nations, Department of Economic and Social Affairs, Population Division, NY

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). United Nations, New York

    Google Scholar 

  • United Nations Environmental Program (2013) Guidelines for national waste management strategies moving from challenges to opportunities (PDF). ISBN 978-92-807-3333-4

    Google Scholar 

  • Van Wesenbeeck S, Prins W, Ronsse F, Antal MJ Jr (2014) Sewage sludge carbonization for biochar applications. Fate of heavy metals. Energy Fuel 28(8):5318–5326. https://doi.org/10.1021/ef500875c

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos A, Van Der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. European Commision, p. 162. 24099

    Google Scholar 

  • Wang N-Y, Shih C-H, Chiueh P-T, Huang Y-F (2013) Environmental effects of sewage sludge carbonization and other treatment alternatives. Energies 6:871–883

    CAS  Google Scholar 

  • Walter I, Martinez F, Cala V (2006) Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ Pollut 139(3):507–514. https://doi.org/10.1016/j.envpol.2005.05.020

    Article  CAS  Google Scholar 

  • Wéry N, Lhoutellier C, Ducray F, Delgenès JP, Godon JJ (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res 42(1–2):53–62. https://doi.org/10.1016/j.watres.2007.06.048

    Article  CAS  Google Scholar 

  • Williams FP Jr, Hurst CJ (1988) Detection of environmental viruses in sludge: Enhancement of enterovirus plaque assay titers with 5-iodo-2′-deoxyuridine and comparison to adenovirus and coliphage titers. Water Res 22(7):847–851. https://doi.org/10.1016/0043-1354(88)90022-X

    Article  CAS  Google Scholar 

  • Wilson S, Duarte-Davidson RZ, Jones K (1996) Screening the environmental fate of organic contaminants in sewage sludges applied to agricultural soils: 1. The potential for downward movement to groundwaters. Sci Total Environ 185:45–57

    CAS  Google Scholar 

  • Wójtowicz A (2013) Modelowe rozwiązania w gospodarce osadowej, Bydgoski Dom Wydawniczy “Margrafsen”

    Google Scholar 

  • Wong MH (2012) Environmental contamination: health risks and ecological restoration. Taylor & Francis Group

    Google Scholar 

  • Wong JWC, Selvam A (2006) Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere 63(6):980–986. https://doi.org/10.1016/j.chemosphere.2005.08.045

    Article  CAS  Google Scholar 

  • Xiang L, Chan LC, Wong JWC (2000) Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41(1–2):283–287. https://doi.org/10.1016/S0045-6535(99)00422-1

    Article  CAS  Google Scholar 

  • Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. https://doi.org/10.1016/j.watres.2015.04.002

    Article  CAS  Google Scholar 

  • Zennegg M, Munoz M, Schmid P, Gerecke AC (2013) Temporal trends of persistent organic pollutants in digested sewage sludge (1993–2012). Environ Int 60:202–208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishna, D., Sachan, H.K., Jatav, H.S. (2022). Management of Sewage Sludge for Environmental Sustainability. In: Rajput, V.D., Yadav, A.N., Jatav, H.S., Singh, S.K., Minkina, T. (eds) Sustainable Management and Utilization of Sewage Sludge. Springer, Cham. https://doi.org/10.1007/978-3-030-85226-9_17

Download citation

Publish with us

Policies and ethics