Skip to main content

Traditional Crude Drugs Against Encephalitis Infection: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Living reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 37 Accesses

Abstract

Encephalitis infection is an infection in the brain causing inflammation of the brain. An infection or an autoimmune response generally causes encephalitis. The most common causes of encephalitis infection are herpes simplex, varicella zoster, measles, mumps, and rubella viruses. Viruses spread by animals – tick-borne encephalitis, Japanese encephalitis, and rabies – may cause encephalitis infection. The other causes of encephalitis infection are bacteria, fungi, and parasites. Encephalitis often produces flu-like signs and symptoms such as a fever and headache; it can also cause confused thinking, seizures, or problems with movement. In some cases, encephalitis can be life-threatening. Therefore, timely diagnosis and treatment are vital because it’s difficult to predict how encephalitis will affect each individual. Several allopathic drugs are used to treat encephalitis infection but have some adverse effects. Some herbal medicines are used to treat encephalitis infection, such as arctigenin, indirubin, and extracts of Isatis indigotica. These herbal medicines are produced against encephalitis infection by different mechanisms, such as arctigenin inhibiting the replication of Japanese encephalitis virus (JEV). It has been reported that JEV infection increases p38 and p-JNK. At the same time, treatment with arctigenin significantly downregulated the level of p38 and p-JNK; therefore, arctigenin inhibits Japanese encephalitis virus (JEV), reducing the viral replication within the brain, neuronal death, secondary inflammation, and oxidative stress resulting from microglial activation. At the same time, indirubin exerts its effects against encephalitis infection by downregulating the expression of genes. Herbal medicines are thought not to have negative consequences; hence, crude drugs are better choices for treating encephalitis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

CDKs:

Cyclin-dependent kinases

CNS:

Central nervous system

COX:

Cyclooxygenase

CT:

Computed tomography

EEG:

Electroencephalogram

EMT:

Epithelial-mesenchymal transition

EPO :

Eosinophil peroxidase

ERK:

Extracellular signal-regulated kinase

GPX1:

Glutathione peroxidase

GR :

Glutathione reductase

HFD:

High-fat diet

HIV:

Human immunodeficiency virus

IgE:

Immunoglobulin E

IL-6:

Interleukin-6

IMQ:

Imiquimod

JEV:

Japanese encephalitis virus

JNK:

Jun N-terminal kinase

MAP kinase:

Mitogen-activated protein kinase

MPO :

Myeloperoxidase

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

NAPSI:

Nail Psoriasis Severity Index

PBMCs:

Peripheral blood mononuclear cells

PCR:

Polymerase chain reaction

PPARγ:

Peroxisome proliferator-activated receptor-γ

RAFLSs:

Rheumatoid arthritis fibroblast-like synoviocytes

RANTES:

Regulated on Activation, Normal T Cell Expressed and Secreted

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor alpha

Txn :

Thioredoxin

UCP2:

Uncoupling protein-2

VCAM-1:

Vascular cell adhesion 1

References

  1. Guimarães LE, Baker B, Perricone C, Shoenfeld Y (2015) Vaccines, adjuvants and autoimmunity. Pharmacol Res 100:190–209. https://doi.org/10.1016/j.phrs.2015.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, Cunningham R, Zuckerman M, Mutton KJ, Solomon T, Ward KN, Lunn MP, Irani SR, Vincent A, Brown DW, Crowcroft NS (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844. https://doi.org/10.1016/s1473-3099(10)70222-x

    Article  PubMed  Google Scholar 

  3. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, van Loon AM (1996) The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. The EU Concerted Action on Virus Meningitis and Encephalitis. J Neurol Neurosurg Psychiatry 61:339–345. https://doi.org/10.1136/jnnp.61.4.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baumgartner A, Rauer S, Mader I, Meyer PT (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260:2744–2753. https://doi.org/10.1007/s00415-013-7048-2

    Article  PubMed  Google Scholar 

  5. Stahl JP, Azouvi P, Bruneel F, De Broucker T, Duval X, Fantin B, Girard N, Herrmann JL, Honnorat J, Lecuit M, Mailles A, Martinez-Almoyna L, Morand P, Piroth L, Tattevin P (2017) Guidelines on the management of infectious encephalitis in adults. Med Mal Infect 47:179–194. https://doi.org/10.1016/j.medmal.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  6. Nishio M, Hirooka K, Doi Y (2018) Pulmonary arterial hypertension associated with the chinese herb indigo naturalis for ulcerative colitis: it may be reversible. Gastroenterology 155:577–578. https://doi.org/10.1053/j.gastro.2018.04.038

    Article  PubMed  Google Scholar 

  7. Misra UK, Tan CT, Kalita J (2008) Viral encephalitis and epilepsy. Epilepsia 49(Suppl 6):13–18. https://doi.org/10.1111/j.1528-1167.2008.01751.x

    Article  PubMed  Google Scholar 

  8. Mailles A, De Broucker T, Costanzo P, Martinez-Almoyna L, Vaillant V, Stahl JP (2012) Long-term outcome of patients presenting with acute infectious encephalitis of various causes in France. Clin Infect Dis 54:1455–1464. https://doi.org/10.1093/cid/cis226

    Article  PubMed  Google Scholar 

  9. Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, Hartman BJ, Kaplan SL, Scheld WM, Whitley RJ (2008) The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47:303–327. https://doi.org/10.1086/589747

    Article  CAS  PubMed  Google Scholar 

  10. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33:1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sachan N, Chandra P, Pal D (2021) Chapter 16. Scaffold of pyrazole derivatives for enzyme inhibition. In: Pal D (ed) Pyrazole: preparation and uses. NOVA Science, USA

    Google Scholar 

  13. Gurjar VK, Pal D, Patel AD (2021) Chapter 15. Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents. In: Pal D (ed) Pyrazole: preparation and uses. NOVA Science, USA

    Google Scholar 

  14. Pal DK, Mandal M, Senthilkumar GP, Padhiari A (2006) Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 77:589–591. https://doi.org/10.1016/j.fitote.2006.06.015

    Article  CAS  PubMed  Google Scholar 

  15. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium Lf. Sci Res Essays 2:486–490

    Google Scholar 

  16. Pal D, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Pharmaceut Sci 6:213–216

    CAS  Google Scholar 

  17. Pal D, Tripathi R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial, and pharmacological evaluation of some 2, 5-disubstituted sulfonyl amino 1,3,4-oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Technol Res 5:196–201. https://doi.org/10.4103/2231-4040.143040

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation-associated cancers. J Chemother 28:255–265. https://doi.org/10.1179/1973947815y.0000000060

    Article  CAS  PubMed  Google Scholar 

  19. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid: Med Chem 1:1–8

    Google Scholar 

  20. Chandra P, Kishore K, Ghosh AK (2015) Assessment of antisecretory, gastroprotective, and in-vitro antacid potential of daucus carota in experimental rats. Osong Public Health Res Perspect 6:329–335. https://doi.org/10.1016/j.phrp.2015.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant System Evol 259:89–120. https://doi.org/10.1007/s00606-006-0415-z

    Article  Google Scholar 

  22. Liang ZB, Li HY, Li XL (2016) Study on the effective components of Isatis indigotica root, stem and leaf. Guangzhou Chem 44:156–157

    CAS  Google Scholar 

  23. Deng X, Gao G, Zheng S, Li F (2008) Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. J Pharm Biomed Anal 48:562–567. https://doi.org/10.1016/j.jpba.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  24. Li B (2005) Phenylpropanoids isolated from tetraploid roots of Isatis indigotica. Chin Tradit Herbal Drugs 36:326–328

    CAS  Google Scholar 

  25. Chen M, Gan L, Lin S, Wang X, Li L, Li Y, Zhu C, Wang Y, Jiang B, Jiang J, Yang Y, Shi J (2012) Alkaloids from the root of Isatis indigotica. J Nat Prod 75:1167–1176. https://doi.org/10.1021/np3002833

    Article  CAS  PubMed  Google Scholar 

  26. Angelini LG, Tozzi S, Nassi o Di Nasso N (2007) Differences in leaf yield and indigo precursors production in woad (Isatis tinctoria L.) and Chinese woad (Isatis indigotica Fort.) genotypes. Field Crops Res 101:285–295. https://doi.org/10.1016/j.fcr.2006.12.004

    Article  Google Scholar 

  27. Gilbert G, Garton S, Karam A, Arnold M, Karp A, Edwards J, Cooke T, Barker A (2002) A high degree of genetic diversity is revealed in Isatis spp. (dyer’s woad) by amplified fragment length polymorphism (AFLP). Theor Appl Genet 104:1150–1156. https://doi.org/10.1007/s00122-001-0863-3

    Article  CAS  Google Scholar 

  28. Sun ZY, Pang XH (2013) Discussion on the botanical origin of Isatidis radix and Isatidis folium based on DNA barcoding. Yao Xue Xue Bao 48:1850–1855

    CAS  PubMed  Google Scholar 

  29. Liu JF, Jiang ZY, Wang RR, Zheng YT, Chen JJ, Zhang XM, Ma YB (2007) Isatisine A, a novel alkaloid with an unprecedented skeleton from leaves of Isatis indigotica. Org Lett 9:4127–4129. https://doi.org/10.1021/ol701540y

    Article  CAS  PubMed  Google Scholar 

  30. Chen Q, Lan H-Y, Peng W, Rahman K, Liu Q-C, Luan X, Zhang H (2021) Isatis indigotica: a review of phytochemistry, pharmacological activities and clinical applications. The Journal of pharmacy and pharmacology 73:1137–1150. https://doi.org/10.1093/jpp/rgab014

    Article  PubMed  Google Scholar 

  31. Deng XY, Zheng SN, Gao GH, Fan G, Li F (2008) Determination and pharmacokinetic study of indirubin in rat plasma by high-performance liquid chromatography. Phytomedicine 15:277–283. https://doi.org/10.1016/j.phymed.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Liu Y, Sheng W, Sun J, Qin G (1997) Chemical constituents of Isatis indigotica. Planta Med 63:55–57. https://doi.org/10.1055/s-2006-957604

    Article  CAS  PubMed  Google Scholar 

  33. Li ZT, Li L, Wang YT (2016) Study on the efficacy of aqueous extract of Radix isatidis in inhibiting human H7N9 avian influenza virus in vitro. J Moder Chin Wester Med 25:3877–3879

    Google Scholar 

  34. Li Y, Cai W, Weng X, Li Q, Wang Y, Chen Y, Zhang W, Yang Q, Guo Y, Zhu X, Wang H (2015) Lonicerae Japonicae Flos and Lonicerae Flos: a systematic pharmacology review. Evidence-Based Complement Alternat Med 2015:905063. https://doi.org/10.1155/2015/905063

    Article  Google Scholar 

  35. Lv WY, Lv P (2003) Determination of eight inorganic elements in the Folium isatidis of Flos Lonicerae and Forsythia suspense. Microelement Health Res 6:26–27

    Google Scholar 

  36. Zuo L, Li JB, Xu J, Yang JZ, Zhang DM, Tong YL (2007) Studies on chemical constituents in root of Isatis indigotica. Zhongguo Zhong Yao Za Zhi 32:688–691

    CAS  PubMed  Google Scholar 

  37. Sadati SM, Gheibi N, Ranjbar S, Hashemzadeh MS (2019) Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed Rep 10:33–38. https://doi.org/10.3892/br.2018.1173

    Article  CAS  PubMed  Google Scholar 

  38. Jing C-L, Dong X-F, Tong J-M (2015) Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method. Molecules 20:15550–15571. https://doi.org/10.3390/molecules200915550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu YH, Ding SP, Wu XY (2002) Study on chemical constituents of isatis root (III). Chin Herb Med 33:3–5

    Google Scholar 

  40. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD (2005) Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 68:36–42. https://doi.org/10.1016/j.antiviral.2005.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW (2012) Antiviral activity of Isatis indigotica extract and its derived indirubin against japanese encephalitis virus. Evid Based Complement Alternat Med 2012:925830. https://doi.org/10.1155/2012/925830

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsuan SL, Chang SC, Wang SY, Liao TL, Jong TT, Chien MS, Lee WC, Chen SS, Liao JW (2009) The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J Ethnopharmacol 123:61–67. https://doi.org/10.1016/j.jep.2009.02.028

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun D-D, Dong W-w, Li X, Zhang H-Q (2010) Indole alkaloids from the roots of Isatis ingigotica and their antiherpes simplex virus type 2 (HSV-2) activity in vitro. Chem Natur Comp 46:763–766. https://doi.org/10.1007/s10600-010-9735-x

    Article  CAS  Google Scholar 

  44. Fang J, Wan J, Tang J, Wang W, Liu Y (2009) Radix isatidis and infectious diseases caused by viruses. Zhongguo Zhong Yao Za Zhi 34:3169–3172

    PubMed  Google Scholar 

  45. Hu Z, Tu Y, Xia Y, Cheng P, Sun W, Shi Y, Guo L, He H, Xiong C, Chen S, Zhang X (2015) Rapid identification and verification of indirubin-containing medicinal plants. Evid Based Complement Alternat Med 2015:484670. https://doi.org/10.1155/2015/484670

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Sha F, Chen YH (2014) Research progress on antitumor and neuroprotective effects of indirubin and its analogues. Chin Med Herb 45:2404–2411

    CAS  Google Scholar 

  47. Jin MZ, Ren DX, Meng FP (2007) Effect of Radix isatidis on immune function and influenza virus FM1. Lishizhen Med Mater Med Res 2:394–396. https://doi.org/10.3969/j.issn.1008-0805.2007.02.073

    Article  Google Scholar 

  48. He LW, Wu XP, Yang JY, Li X, Li W (2014) Extraction and purification of total alkaloids from Radix isatidis and their antiviral pharmacological effects. Chin Patent Drug:2611–2614. https://doi.org/10.3969/j.issn.1001-1528.2014.12.039

  49. Xu YF, Liu JG, Zhao B (2010) Effect of acid of Radix isatidis alkaloid on adsorption and release of Newcastle disease virus. J Nanjing Agri Univ 33:90–94. https://doi.org/10.7685/j.issn.1000-2030.2010.06.017

    Article  CAS  Google Scholar 

  50. Liu XJ, Lin SJ (2014) Study on anti-virus effect of peptides from Isatis indigotica on the mice infected by influenza virus. Chin Pharm 25:590–592. https://doi.org/10.6039/j.issn.1001-0408.2014.07.05

    Article  Google Scholar 

  51. Fang JG, Hu Y, Tang J (2005) Effect of Radix isatidis on herpes simplex virus type I in vitro. Chin Trad Herb Drugs 30:242–244. https://doi.org/10.3321/j.issn:1001-5302.2005.17.011

    Article  Google Scholar 

  52. Yan Q (2017) Clinical observation on 86 cases of chronic hepatitis B treated with Yiganjiedu Decoction and entecavir. Clin J Chin Med 9:42–43

    Google Scholar 

  53. Li J, Liu YH, Huang MS (2008) Anti-endotoxic effects of 4(3H)-quinazolinone from Radix isatidis. West Chin J Pharm Sci 23(01):7–9

    CAS  Google Scholar 

  54. Huang S (2018) Clinical observation on the treatment of upper respiratory tract infection with Radix isatidis granules. J North Pharm 15:149. https://doi.org/CNKI:SUN:BFYX.0.2018-05-128

    Google Scholar 

  55. Huang YQ (2019) Observation on the efficacy of oseltamivir phosphate combined with Radix isatidis Granules in the treatment of influenza A(H1N1) and discussion on nursing care. Strait Pharm J 31:233–234. https://doi.org/CNKI:SUN:HAIX.0.2019-01-131

    Google Scholar 

  56. Luo CYH, N Y (1990) “Root and leaf Decoction” in the treatment of 28 cases of male condyloma acuminatum. J Integr Chin West Med 9:537. https://doi.org/10.7661/CJIM.1990.9.537

    Article  Google Scholar 

  57. Zhang DL, He CXZ, H B (2019) Clinical efficacy and mechanism of Folium isatidis for pasfulosis palmaris et plantaris: a pilot study. J Dermatol Venereol 41:476–478. https://doi.org/CNKI:SUN:PFBX.0.2019-04-005

    CAS  Google Scholar 

  58. Dai L, Yang G, Zhen C (2001) Herba houttuyniae injection and radix isatidis granule in the treatment of epidemic kerato-conjunctivitis. Chin Naturopath 09(005):47–48. https://doi.org/10.3969/j.issn.1007-5798.2001.05.066

    Article  Google Scholar 

  59. Ma WY, Lu RY, Xu F (2003) An observation on the therapeutic efficacy of compound radix isatidis on viral myocarditis. Prac J Cardiac Cere Pneumal Vascular Dis 011(003):135–138. https://doi.org/10.3969/j.issn.1008-5971.2003.03.003

    Article  Google Scholar 

  60. Swarup V, Ghosh J, Mishra MK, Basu A (2008) Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 61:679–688. https://doi.org/10.1093/jac/dkm503

    Article  CAS  PubMed  Google Scholar 

  61. Srivastava D (2016) Global scenario of antiviral drugs for japanese encephalitis. Res J Rec Sci 5(10):48–52

    CAS  Google Scholar 

  62. Yang Z, Liu N, Huang B (2005) Effect of anti-influenza virus of Arctigenin in vivo. Zhong Yao Cai 28:1012–1014

    PubMed  Google Scholar 

  63. Cho MK, Jang YP, Kim YC, Kim SG (2004) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition. Int Immunopharmacol 4:1419–1429. https://doi.org/10.1016/j.intimp.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  64. Schröder HC, Merz H, Steffen R, Müller WE, Sarin PS, Trumm S, Schulz J, Eich E (1990) Differential in vitro anti-HIV activity of natural lignans. Z Naturforsch C J Biosci 45:1215–1221. https://doi.org/10.1515/znc-1990-11-1222

    Article  PubMed  Google Scholar 

  65. Ishihara K, Yamagishi N, Saito Y, Takasaki M, Konoshima T, Hatayama T (2006) Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells. Cell Stress Chaperones 11:154–161. https://doi.org/10.1379/csc-148r.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He B, Zhang H-J, Yang W-H, Shao Z-Y, Wu L-J, Chen X-B, Chen J, Liu W, Ran Z-P, Jin R-G, Cao J-Y (2019) Pharmacokinetics of arctigenin and Fructus arctii powder in piglets. 6. https://doi.org/10.3389/fvets.2019.00235

  67. Li J, Li X, Ren YS, Lv YY, Zhang JS, Xu XL, Wang XZ, Yao JC, Zhang GM, Liu Z (2017) Elucidation of arctigenin pharmacokinetics and tissue distribution after intravenous, oral, hypodermic and sublingual administration in rats and beagle dogs: integration of in vitro and in vivo findings. Front Pharmacol 8:376. https://doi.org/10.3389/fphar.2017.00376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayashi K, Narutaki K, Nagaoka Y, Hayashi T, Uesato S (2010) Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. Biol Pharm Bull 33:1199–1205. https://doi.org/10.1248/bpb.33.1199

    Article  CAS  PubMed  Google Scholar 

  69. Eich E, Pertz H, Kaloga M, Schulz J, Fesen MR, Mazumder A, Pommier Y (1996)(−)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 39:86–95. https://doi.org/10.1021/jm950387u

    Article  CAS  PubMed  Google Scholar 

  70. Barkat MA, Rizwanullah M, Naim J, Pottoo FH, Kumar R (2014) Phytoconstituents as potential anti-HIV agents: a systematic review. Int J Biomed Res 5:299–313

    Google Scholar 

  71. Park J-H, Hong Y-J, Moon E-J, Kim S-A, Kim S-Y (2011) Forsythiae Fructus and its active component, arctigenin, provide neuroprotection by inhibiting neuroinflammation. Biomol Therap 19:425–430. https://doi.org/10.4062/biomolther.2011.19.4.425

    Article  CAS  Google Scholar 

  72. Song J, Li N, Xia Y, Gao Z, Zou S-F, Kong L, Yao Y-J, Jiao Y-N, Yan Y-H, Li S-H, Tao Z-Y, Lian G, Yang J-X, Kang T-G (2016) Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion. 7. https://doi.org/10.3389/fphar.2016.00182

  73. Huang J, Xiao L, Wei JX, Shu YH, Fang SQ, Wang YT, Lu XM (2017) Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells. Mol Med Rep 15:2235–2240. https://doi.org/10.3892/mmr.2017.6222

    Article  CAS  PubMed  Google Scholar 

  74. Kang HS, Lee JY, Kim CJ (2008) Anti-inflammatory activity of arctigenin from Forsythiae Fructus. J Ethnopharmacol 116:305–312. https://doi.org/10.1016/j.jep.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  75. Wu RM, Sun YY, Zhou TT, Zhu ZY, Zhuang JJ, Tang X, Chen J, Hu LH, Shen X (2014) Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin 35:1274–1284. https://doi.org/10.1038/aps.2014.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang K, Li LA, Meng YG, You YQ, Fu XY, Song L (2014) Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling. Basic Clin Pharmacol Toxicol 115:507–511. https://doi.org/10.1111/bcpt.12270

    Article  CAS  PubMed  Google Scholar 

  77. Han YH, Kee JY, Kim DS, Mun JG, Jeong MY, Park SH, Choi BM, Park SJ, Kim HJ, Um JY, Hong SH (2016) Arctigenin inhibits lung metastasis of colorectal cancer by regulating cell viability and metastatic phenotypes. Molecules 21. https://doi.org/10.3390/molecules21091135

  78. Du ZC, Xue T, Jiang M, Lu HY, Ye ZC, Ruan BJ, Xu CM, Jiang YH, Wei M, Wang G, Lu ZF, Lei XY, Wang L (2016) Arctigenin attenuates imiquimod-induced psoriasis-like skin lesions via down-regulating keratin17. Int J Clin Exp Med 9:1639–1647

    CAS  Google Scholar 

  79. Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira I (2018) New phytochemicals as potential human anti-aging compounds: reality, promise, and challenges. Crit Rev Food Sci Nutr 58:942–957. https://doi.org/10.1080/10408398.2016.1233860

    Article  CAS  PubMed  Google Scholar 

  80. Liu C, Srivastava KD, Yang N, Primas MA, Bushko R, Chin K, Batnick M, Li X-M (2016) Arctigenin isolated from Arctium lappa L. Inhibits IgE production. J Aller Clin Immunol 137. https://doi.org/10.1016/j.jaci.2015.12.954

  81. Huang SL, Yu RT, Gong J, Feng Y, Dai YL, Hu F, Hu YH, Tao YD, Leng Y (2012) Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 55:1469–1481. https://doi.org/10.1007/s00125-011-2366-3

    Article  CAS  PubMed  Google Scholar 

  82. Li XM, Miao Y, Su QY, Yao YC, Li HH, Zhang GM (2016) Gastroprotective effects of arctigenin of Arctium lappa L. on a rat model of gastric ulcers. Biomed Rep 5:589–594. https://doi.org/10.3892/br.2016.770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Han YH, Kee JY, Park J, Kim DS, Jeon YD, Jung YY, Kang JW, Seoso H, Park R, Lee JH, Shin S, Kim SJ, Um JY, Hong SH (2016) Arctigenin inhibits adipogenesis by inducing AMPK activation and reduces weight gain in high fat diet induced obese mice. J Cell Biochem 117:2067–2077

    Article  CAS  Google Scholar 

  84. Li D, Liu Q, Jia D, Dou D, Wang X, Kang T (2014) Protective effect of arctigenin against MPP+and MPTP-induced neurotoxicity. Planta Med 80:48–55. https://doi.org/10.1055/s-0033-1360171

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Z, Yin Y, Wu H, Jiang M, Lou J, Bai G, Luo G (2013) Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels. Cell Physiol Biochem 32:1342–1353. https://doi.org/10.1159/000354532

    Article  CAS  PubMed  Google Scholar 

  86. Zhu Z, Yan J, Jiang W, Yao XG, Chen J, Chen L, Li C, Hu L, Jiang H, Shen X (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 33:13138–13149. https://doi.org/10.1523/jneurosci.4790-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang X, Zeng L, Huang J, Zhou H, Liu Y (2015) Arctigenin, a natural lignan compound, induces apoptotic death of hepatocellular carcinoma cells via suppression of PI3-K/Akt signaling. J Biochem Mol Toxicol 29:458–464. https://doi.org/10.1002/jbt.21712

    Article  CAS  PubMed  Google Scholar 

  88. Liu H, Yang Y, Cai X, Gao Y, Du J, Chen S (2015) The effects of arctigenin on human rheumatoid arthritis fibroblast-like synoviocytes. Pharm Biol 53:1118–1123. https://doi.org/10.3109/13880209.2014.960945

    Article  CAS  PubMed  Google Scholar 

  89. Hsieh WL, Lin YK, Tsai CN, Wang TM, Chen TY, Pang JH (2012) Indirubin, an acting component of indigo naturalis, inhibits EGFR activation and EGF-induced CDC25B gene expression in epidermal keratinocytes. J Dermatol Sci 67:140–146. https://doi.org/10.1016/j.jdermsci.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  90. Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S (2004) Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol 130:627–635. https://doi.org/10.1007/s00432-004-0579-2

    Article  CAS  PubMed  Google Scholar 

  91. Yang Q-Y, Ma L-L, Zhang C, Lin J-Z, Han L, He Y-N, Xie C-G (2021) Exploring the mechanism of indigo naturalis in the treatment of ulcerative colitis based on TLR4/MyD88/NF-κB signaling pathway and gut microbiota. 12. https://doi.org/10.3389/fphar.2021.674416

  92. Spink BC, Hussain MM, Katz BH, Eisele L, Spink DC (2003) Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol 66:2313–2321. https://doi.org/10.1016/j.bcp.2003.08.019

    Article  CAS  PubMed  Google Scholar 

  93. Sugihara K, Kitamura S, Yamada T, Okayama T, Ohta S, Yamashita K, Yasuda M, Fujii-Kuriyama Y, Saeki K, Matsui S, Matsuda T (2004) Aryl hydrocarbon receptor-mediated induction of microsomal drug-metabolizing enzyme activity by indirubin and indigo. Biochem Biophys Res Commun 318:571–578. https://doi.org/10.1016/j.bbrc.2004.04.066

    Article  CAS  PubMed  Google Scholar 

  94. Mak NK, Leung CY, Wei XY, Shen XL, Wong RN, Leung KN, Fung MC (2004) Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochem Pharmacol 67:167–174. https://doi.org/10.1016/j.bcp.2003.08.020

    Article  CAS  PubMed  Google Scholar 

  95. Mok CK, Kang SS, Chan RW, Yue PY, Mak NK, Poon LL, Wong RN, Peiris JS, Chan MC (2014) Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Res 106:95–104. https://doi.org/10.1016/j.antiviral.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  96. Ponnusamy K, Petchiammal C, Mohankumar R, Hopper W (2010) In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br J Ethnopharmacol 132:349–354. https://doi.org/10.1016/j.jep.2010.07.050

    Article  CAS  PubMed  Google Scholar 

  97. Chiang YR, Li A, Leu YL, Fang JY, Lin YK (2013) An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules 18:14381–14396. https://doi.org/10.3390/molecules181114381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jie C, Luo Z, Chen H, Wang M, Yan C, Mao ZF, Xiao GK, Kurihara H, Li YF, He RR (2017) Indirubin, a bisindole alkaloid from Isatis indigotica, reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling. Oncotarget 8:105615–105629. https://doi.org/10.18632/oncotarget.22350

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ponnusamy K, Ramasamy M, Savarimuthu I, Paulraj MG (2010) Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand J Infect Dis 42:500–505. https://doi.org/10.3109/00365541003713630

    Article  CAS  PubMed  Google Scholar 

  100. Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K (2018) Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 105:506–517. https://doi.org/10.1016/j.biopha.2018.05.127

    Article  CAS  PubMed  Google Scholar 

  101. Lin YK, Wong WR, Chang YC, Chang CJ, Tsay PK, Chang SC, Pang JH (2007) The efficacy and safety of topically applied indigo naturalis ointment in patients with plaque-type psoriasis. Dermatology 214:155–161. https://doi.org/10.1159/000098576

    Article  PubMed  Google Scholar 

  102. Lin YK, Leu YL, Huang TH, Wu YH, Chung PJ, Su Pang JH, Hwang TL (2009) Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils. J Ethnopharmacol 125:51–58. https://doi.org/10.1016/j.jep.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  103. Cheng HM, Wu YC, Wang Q, Song M, Wu J, Chen D, Li K, Wadman E, Kao ST, Li TC, Leon F, Hayden K, Brodmerkel C, Chris Huang C (2017) Clinical efficacy and IL-17 targeting mechanism of Indigo naturalis as a topical agent in moderate psoriasis. BMC Complement Altern Med 17:439. https://doi.org/10.1186/s12906-017-1947-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin YK, See LC, Huang YH, Chi CC, Hui RC (2018) Comparison of indirubin concentrations in indigo naturalis ointment for psoriasis treatment: a randomized, double-blind, dosage-controlled trial. Br J Dermatol 178:124–131. https://doi.org/10.1111/bjd.15894

    Article  CAS  PubMed  Google Scholar 

  105. Chang HN, Huang ST, Yeh YC, Wang HS, Wang TH, Wu YH, Pang JH (2015) Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells. J Ethnopharmacol 174:474–481. https://doi.org/10.1016/j.jep.2015.08.050

    Article  CAS  PubMed  Google Scholar 

  106. Zhang X, Song Y, Wu Y, Dong Y, Lai L, Zhang J, Lu B, Dai F, He L, Liu M, Yi Z (2011) Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer 129:2502–2511. https://doi.org/10.1002/ijc.25909

    Article  CAS  PubMed  Google Scholar 

  107. Chang HN, Pang JH, Yang SH, Hung CF, Chiang CH, Lin TY, Lin YK (2010) Inhibitory effect of indigo naturalis on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells. Molecules 15:6423–6435. https://doi.org/10.3390/molecules15096423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kawai S, Iijima H, Shinzaki S, Hiyama S, Yamaguchi T, Araki M, Iwatani S, Shiraishi E, Mukai A, Inoue T, Hayashi Y, Tsujii M, Motooka D, Nakamura S, Iida T, Takehara T (2017) Indigo Naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation. J Gastroenterol 52:904–919. https://doi.org/10.1007/s00535-016-1292-z

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Liu L, Guo Y, Mao T, Shi R, Li J (2017) Effects of indigo naturalis on colonic mucosal injuries and inflammation in rats with dextran sodium sulphate-induced ulcerative colitis. Experiment Therap Med 14:1327–1336. https://doi.org/10.3892/etm.2017.4701

    Article  CAS  Google Scholar 

  110. Lee CL, Wang CM, Hu HC, Yen HR, Song YC, Yu SJ, Chen CJ, Li WC, Wu YC (2019) Indole alkaloids indigodoles A-C from aerial parts of Strobilanthes cusia in the traditional Chinese medicine Qing Dai have anti-IL-17 properties. Phytochemistry 162:39–46. https://doi.org/10.1016/j.phytochem.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  111. Kim MH, Choi YY, Yang G, Cho IH, Nam D, Yang WM (2013) Indirubin, a purple 3,2- bisindole, inhibited allergic contact dermatitis via regulating T helper (Th)-mediated immune system in DNCB-induced model. J Ethnopharmacol 145:214–219. https://doi.org/10.1016/j.jep.2012.10.055

    Article  CAS  PubMed  Google Scholar 

  112. Xie XJ, Di TT, Wang Y, Wang MX, Meng YJ, Lin Y, Xu XL, Li P, Zhao JX (2018) Indirubin ameliorates imiquimod-induced psoriasis-like skin lesions in mice by inhibiting inflammatory responses mediated by IL-17A-producing γδ T cells. Mol Immunol 101:386–395. https://doi.org/10.1016/j.molimm.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  113. Zhang A, Qu Y, Zhang B (2007) The different effects of indirubin on effector and CD4+CD25+regulatory T cells in mice: potential implication for the treatment of autoimmune diseases. J Mol Med (Berl):1263–1270

    Google Scholar 

  114. Man Y, Wang YX, Zhu SY (2012) Indirubin inhibits ATP-induced phagocytosis attenuation, ROS production and cell death of macrophages. Acta Pharm Sin 47:45–50

    CAS  Google Scholar 

  115. Suzuki H, Kaneko T, Mizokami Y, Narasaka T, Endo S, Matsui H, Yanaka A, Hirayama A, Hyodo I (2013) Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J Gastroenterol 19:2718–2722. https://doi.org/10.3748/wjg.v19.i17.2718

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sugimoto S, Naganuma M, Kiyohara H, Arai M, Ono K, Mori K, Saigusa K, Nanki K, Takeshita K, Takeshita T, Mutaguchi M, Mizuno S, Bessho R, Nakazato Y, Hisamatsu T, Inoue N, Ogata H, Iwao Y, Kanai T (2016) Clinical efficacy and safety of oral Qing-Dai in patients with ulcerative colitis: a single-center open-label prospective study. Digestion 93:193–201. https://doi.org/10.1159/000444217

    Article  CAS  PubMed  Google Scholar 

  117. Lin YK, See LC, Chang YC, Huang YH, Chen JL, Tsou TC, Leu YL, Shen YM (2011) Treatment of psoriatic nails with indigo naturalis oil extract: a non-controlled pilot study. Dermatology 223:239–243. https://doi.org/10.1159/000333362

    Article  PubMed  Google Scholar 

  118. Lin YK, See LC, Huang YH, Chang YC, Tsou TC, Lin TY, Lin NL (2014) Efficacy and safety of Indigo naturalis extract in oil (Lindioil) in treating nail psoriasis: a randomized, observer-blind, vehicle-controlled trial. Phytomedicine 21:1015–1020. https://doi.org/10.1016/j.phymed.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  119. Kondo S, Araki T, Okita Y, Yamamoto A, Hamada Y, Katsurahara M, Horiki N, Nakamura M, Shimoyama T, Yamamoto T, Takei Y, Kusunoki M (2018) Colitis with wall thickening and edematous changes during oral administration of the powdered form of Qing-dai in patients with ulcerative colitis: a report of two cases. Clin J Gastroenterol 11:268–272. https://doi.org/10.1007/s12328-018-0851-7

    Article  PubMed  Google Scholar 

  120. Yanai S, Nakamura S, Matsumoto T (2018) Indigo naturalis-induced colitis. Dig Endosc 30:791. https://doi.org/10.1111/den.13226

    Article  PubMed  Google Scholar 

  121. Nishio M, Hirooka K, Doi Y (2016) Chinese herbal drug natural indigo may cause pulmonary artery hypertension. Eur Heart J 37:1992. https://doi.org/10.1093/eurheartj/ehw090

    Article  PubMed  Google Scholar 

  122. Matsuno Y, Hirano A, Torisu T, Okamoto Y, Fuyuno Y, Fujioka S, Umeno J, Moriyama T, Nagai S, Hori Y, Fujiwara M, Kitazono T, Esaki M (2020) Short-term and long-term outcomes of indigo naturalis treatment for inflammatory bowel disease. J Gastroenterol Hepatol 35:412–417. https://doi.org/10.1111/jgh.14823

    Article  PubMed  Google Scholar 

  123. Naganuma M, Sugimoto S, Suzuki H, Matsuno Y, Araki T, Shimizu H, Hayashi R, Fukuda T, Nakamoto N, Iijima H, Nakamura S, Kataoka M, Tamura Y, Tatsumi K, Hibi T, Suzuki Y, Kanai T (2019) Adverse events in patients with ulcerative colitis treated with indigo naturalis: a Japanese nationwide survey. J Gastroenterol 54:891–896. https://doi.org/10.1007/s00535-019-01591-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Shri Suresh Jain, Chancellor, TeerthankerMahaveer University, for their motivation and for providing all necessary facilities in the laboratories of the University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chandra, P., Sachan, N., Patel, A.K., Pal, D. (2022). Traditional Crude Drugs Against Encephalitis Infection: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83350-3_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83350-3_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83350-3

  • Online ISBN: 978-3-030-83350-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics