Skip to main content

Failure or Delay of Fracture Healing

  • Chapter
  • First Online:
Joint Function Preservation

Abstract

Subchondral fractures typically tend to resolve spontaneously with non-surgical treatment; nevertheless, there are some cases in which these lesions persist longer than expected. This delay in healing can be evidenced with persistent “edema like lesions” on MRI and/or persistent articular symptoms. Literature is scarce mainly because it is a silent problem; difficult to evaluate and diagnose in a controlled study. Nevertheless, the problem exists. The main consequence following this injury is the occasional progression to failure of the osteochondral unit with subsequent joint collapse. The aim of this chapter will be to describe and identify the significance of delay in fracture healing; to discuss the main possible modifiable risk factors of delayed bone healing; and to identify early markers of progression and joint failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Food and Drug Administration. Guidance document for the preparation of investigational device exemptions and pre-marked approval application for bone growth stimulator devices. Rockville, MD: United States Food and Drug Administration; 1988. Federal Register Volume 63, Issue 81

    Google Scholar 

  2. Müller ME, Allgöwer M, Schneider R, Willenegger H, Müller ME, Allgöwer M, et al. Introduction. In: Manual of internal fixation. Berlin/Heidelberg: Springer; 1979.

    Chapter  Google Scholar 

  3. Graf BK, Cook DA, de Smet AA, Keene JS. “Bone bruises” on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med. 1993;21(2):220–3.

    Article  PubMed  CAS  Google Scholar 

  4. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.

    Article  PubMed  Google Scholar 

  5. Pape D, Seil R, Fritsch E, Rupp S, Kohn D. Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients. Knee Surg Sports Traumatol Arthrosc. 2002;10(4):233–40.

    Article  PubMed  Google Scholar 

  6. Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15(6):601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shimizu T, Yokota S, Kimura Y, Asano T, Shimizu H, Ishizu H, et al. Predictors of cartilage degeneration in patients with subchondral insufficiency fracture of the femoral head: a retrospective study. Arthritis Res Ther. 2020;22(1):150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Deng Z, Gao X, Sun X, Cui Y, Amra S, Huard J. Gender differences in tibial fractures healing in normal and muscular dystrophic mice. Am J Transl Res. 2020;12(6):2640–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Yamamoto T, Karasuyama K, Iwasaki K, Doi T, Iwamoto Y. Subchondral insufficiency fracture of the femoral head in males. Arch Orthop Trauma Surg. 2014;134(9):1199–203.

    Article  PubMed  Google Scholar 

  10. Gaston MS, AHRW S. Inhibition of fracture healing. J Bone Joint Surg Br. 2007;89(12):1553–60.

    Article  PubMed  CAS  Google Scholar 

  11. Tabrizi A. Effect of metabolic syndrome on union rate of fractures. J Anal Res Clin Med. 2015;3(1):37–42.

    Article  Google Scholar 

  12. Sun K, Liu J, Lu N, Sun H, Ning G. Association between metabolic syndrome and bone fractures: a meta-analysis of observational studies. BMC Endocr Disord. 2014;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dickson BM, Roelofs AJ, Rochford JJ, Wilson HM, De Bari C. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res Ther. 2019;21(1):289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The impact of type 2 diabetes on bone fracture healing. Front Endocrinol (Lausanne). 2018;9:6.

    Article  Google Scholar 

  15. Tyndall WA, Beam HA, Zarro C, O’Connor JP, Lin SS. Decreased platelet derived growth factor expression during fracture healing in diabetic animals. Clin Orthop Relat Res. 2003;408:319–30.

    Article  Google Scholar 

  16. Funk JR, Hale JE, Carmines D, Gooch HL, Hurwitz SR. Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res. 2000;18(1):126–32.

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y, Huang YC, Yan CH, Chiu KY, Wei Q, Zhao J, et al. Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res. 2017;5(1):17034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Beam HA, Russell Parsons J, Lin SS. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J Orthop Res. 2002;20(6):1210–6.

    Article  PubMed  CAS  Google Scholar 

  19. Gandhi A, Beam HA, O’Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482–90.

    Article  PubMed  CAS  Google Scholar 

  20. Meesters DM, Wijnands KAP, Brink PRG, Poeze M. Malnutrition and fracture healing: are specific deficiencies in amino acids important in nonunion development? Nutrients. 2018;10(11):1597.

    Article  PubMed Central  Google Scholar 

  21. Lavet C, Ammann P. Osteoarthritis like alteration of cartilage and subchondral bone induced by protein malnutrition is treated by nutritional essential amino acids supplements. Osteoarthr Cartil. 2017;25:S293.

    Article  Google Scholar 

  22. Meesters DM, Neubert S, Wijnands KAP, Heyer FL, Zeiter S, Ito K, et al. Deficiency of inducible and endothelial nitric oxide synthase results in diminished bone formation and delayed union and nonunion development. Bone. 2016;83:111–8.

    Article  PubMed  CAS  Google Scholar 

  23. Hughes MS, Kazmier P, Burd TA, Anglen J, Stoker AM, Kuroki K, et al. Enhanced fracture and soft-tissue healing by means of anabolic dietary supplementation. J Bone Joint Surg Am. 2006;88(11):2386–94.

    Article  PubMed  Google Scholar 

  24. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological risk factors for nonunion of bone fracture. JBJS Rev. 2016;4(1):1–12.

    Article  Google Scholar 

  25. Gorter EA, Hamdy NAT, Appelman-Dijkstra NM, Schipper IB. The role of vitamin D in human fracture healing: a systematic review of the literature. Bone. 2014;64:288–97.

    Article  PubMed  CAS  Google Scholar 

  26. Dao D, Sodhi S, Tabasinejad R, Peterson D, Ayeni OR, Bhandari M, et al. Serum 25-hydroxyvitamin D levels and stress fractures in military personnel: a systematic review and meta-analysis. Am J Sports Med. 2015;43(8):2064–72.

    Article  PubMed  Google Scholar 

  27. Childs BR, Andres BA, Vallier HA. Economic benefit of calcium and vitamin D supplementation: does it outweigh the cost of nonunions? J Orthop Trauma. 2016;30(8):e285–8.

    Article  PubMed  Google Scholar 

  28. Kapania EM, Reif TJ, Tsumura A, Eby JM, Callaci JJ. Alcohol-induced Wnt signaling inhibition during bone fracture healing is normalized by intermittent parathyroid hormone treatment. Anim Model Exp Med. 2020;7:3(2).

    Google Scholar 

  29. Akamatsu Y, Mitsugi N, Hayashi T, Kobayashi H, Saito T. Low bone mineral density is associated with the onset of spontaneous osteonecrosis of the knee. Acta Orthop. 2012;83(3):249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nelson FR, Craig J, Francois H, Azuh O, Oyetakin-White P, King B. Subchondral insufficiency fractures and spontaneous osteonecrosis of the knee may not be related to osteoporosis. Arch Osteoporos. 2014;9(1):1–7.

    Article  Google Scholar 

  31. Berger CE, Kröner AH, Minai-Pour MB, Ogris E, Engel A. Biochemical markers of bone metabolism in bone marrow edema syndrome of the hip. Bone. 2003;33(3):346–51.

    Article  PubMed  CAS  Google Scholar 

  32. Habib GS. Systemic effects of intra-articular corticosteroids. Clin Rheumatol. 2009;28(7):749–56.

    Article  PubMed  Google Scholar 

  33. Liu YZ, Akhter MP, Gao X, Wang XY, Wang XB, Zhao G, et al. Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clin Interv Aging. 2018;13:1465–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zura R, Kaste SC, Heffernan MJ, Accousti WK, Gargiulo D, Wang Z, et al. Risk factors for nonunion of bone fracture in pediatric patients. Medicine (Baltimore). 2018;97(31):e11691.

    Article  Google Scholar 

  35. Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought? Radiology. 2019;293(3):656–63.

    Article  PubMed  Google Scholar 

  36. Song YW, Zhang T, Wang WB. Gluococorticoid could in influence extracellular matrix synthesis through Sox9 via p38 MAPK pathway. Rheumatol Int. 2012;32(11):3669–73.

    Article  PubMed  CAS  Google Scholar 

  37. Wernecke C, Braun HJ, Dragoo JL. The effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop J Sport Med. 2015;3(5):1–7.

    Article  Google Scholar 

  38. Bednar DA. Teriparatide treatment of a glucocorticoid-associated resorbing nonunion of a type III odontoid process fracture: A case report. J Spinal Disord Tech. 2013;26(8):E319–22.

    Article  PubMed  Google Scholar 

  39. Mitani Y. Effective treatment of a steroid-induced femoral neck fracture nonunion with a once-weekly administration of teriparatide in a rheumatoid patient: a case report. Arch Osteoporos. 2013;8(1):131.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Riew KD, Long J, Rhee J, Lewis S, Kuklo T, Kim YJ, et al. Time-dependent inhibitory effects of indomethacin on spinal fusion. J Bone Joint Surg Am. 2003;85(4):632–4.

    Article  PubMed  Google Scholar 

  41. Dodwell ER, Latorre JG, Parisini E, Zwettler E, Chandra D, Mulpuri K, et al. NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif Tissue Int. 2010;87(3):193–202.

    Article  PubMed  CAS  Google Scholar 

  42. Schemitsch EH, Bhandari M, Guyatt G, Sanders DW, Swiontkowski M, Tornetta P, et al. Prognostic factors for predicting outcomes after intramedullary nailing of the tibia. J Bone Joint Surg Am. 2012;94(19):1786–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goodman S, Ma T, Trindade M, Ikenoue T, Matsuura I, Wong N, et al. COX-2 selective NSAID decreases bone ingrowth in vivo. J Orthop Res. 2002;20(6):1164–9.

    Article  PubMed  CAS  Google Scholar 

  44. George MD, Baker JF, Leonard CE, Mehta S, Miano TA, Hennessy S. Risk of nonunion with nonselective NSAIDs, COX-2 inhibitors, and opioids. J Bone Joint Surg Am. 2020;102(14):1230–8.

    Article  PubMed  Google Scholar 

  45. Liu B, Ji C, Shao Y, Liang T, He J, Jiang H, et al. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. Biomed Pharmacother. 2020;127:110144.

    Article  PubMed  CAS  Google Scholar 

  46. Chakkalakal DA, Novak JR, Fritz ED, Mollner TJ, McVicker DL, Garvin KL, et al. Inhibition of bone repair in a rat model for chronic and excessive alcohol consumption. Alcohol. 2005;36(3):201–14.

    Article  PubMed  CAS  Google Scholar 

  47. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res. 2007;22(12):1903–12.

    Article  PubMed  CAS  Google Scholar 

  48. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, Burgess AR, Jones AL, et al. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19(3):151–7.

    Article  PubMed  Google Scholar 

  49. McKee MD, DiPasquale DJ, Wild LM, Stephen DJG, Kreder HJ, Schemitsch EH. The effect of smoking on clinical outcome and complication rates following Ilizarov reconstruction. J Orthop Trauma. 2003;17(10):663–7.

    Article  PubMed  Google Scholar 

  50. Pearson RG, Clement RGE, Edwards KL, Scammell BE. Do smokers have greater risk of delayed and non-union after fracture, osteotomy and arthrodesis? A systematic review with meta-analysis. BMJ Open. 2016;6(11):e010303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Scolaro JA, Schenker ML, Yannascoli S, Baldwin K, Mehta S, Ahn J. Cigarette smoking increases complications following fracture: a systematic review. J Bone Joint Surg Am. 2014;96(8):674–81.

    Article  PubMed  Google Scholar 

  52. Ru J-Y, Chen L-X, Hu F-Y, Shi D, Xu R, Du J-W, et al. Factors associated with development of re-nonunion after primary revision in femoral shaft nonunion subsequent to failed intramedullary nailing. J Orthop Surg Res. 2018;13(1):180.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen Y, Guo Q, Pan X, Qin L, Zhang P. Smoking and impaired bone healing: Will activation of cholinergic anti-inflammatory pathway be the bridge? Int Orthop. 2011;35(9):1267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sloan A, Hussain I, Maqsood M, Eremin O, El-Sheemy M. The effects of smoking on fracture healing. Surgeon. 2010;8(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  55. Song Y, Greve JM, Carter DR, Koo S, Giori NJ. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy. Osteoarthr Cartil. 2006;14(8):728–37.

    Article  CAS  Google Scholar 

  56. Yamagami R, Taketomi S, Inui H, Tahara K, Tanaka S. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee. Knee. 2017;24(2):390–5.

    Article  PubMed  Google Scholar 

  57. Klontzas ME, Vassalou EE, Zibis AH, Bintoudi AS, Karantanas AH. MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. Eur J Radiol. 2015;84(3):431–6.

    Article  PubMed  Google Scholar 

  58. Akamatsu Y, Kobayashi H, Kusayama Y, Aratake M, Kumagai K, Saito T. Predictive factors for the progression of spontaneous osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):477–84.

    Article  PubMed  CAS  Google Scholar 

  59. Tsukamoto H, Saito H, Saito K, Yoshikawa T, Oba M, Sasaki K, et al. Radiographic deformities of the lower extremity in patients with spontaneous osteonecrosis of the knee. Knee. 2020;27(3):838–45.

    Article  PubMed  Google Scholar 

  60. Marti CB, Rodriguez M, Zanetti M, Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc. 2000;8(2):83–8.

    Article  PubMed  CAS  Google Scholar 

  61. Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br. 1983;65(5):588–97.

    Article  PubMed  CAS  Google Scholar 

  62. Roemer FW, Bohndorf K. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skelet Radiol. 2002;31(11):615–23.

    Article  CAS  Google Scholar 

  63. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508–19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17(5):445–9.

    Article  PubMed  CAS  Google Scholar 

  65. Ergun T. The relationship between MRI findings and duration of symptoms in transient osteoporosis of the hip. Acta Orthop Traumatol Turc. 2008;42(1):10–5.

    Article  PubMed  Google Scholar 

  66. Davies NH, Niall D, King LJ, Lavelle J, Healy JC. Magnetic resonance imaging of bone bruising in the acutely injured knee—short-term outcome. Clin Radiol. 2004;59(5):439–45.

    Article  PubMed  CAS  Google Scholar 

  67. Muheim G, Bohne WH. Prognosis in spontaneous osteonecrosis of the knee. Investigation by radionuclide scintimetry and radiography. J Bone Joint Surg Br. 1970;52(4):605–12.

    Article  PubMed  CAS  Google Scholar 

  68. Lotke PA, Nelson CL, Lonner JH. Spontaneous osteonecrosis of the knee: tibial plateaus. Orthop Clin North Am. 2004;35(3):365–70.

    Article  PubMed  Google Scholar 

  69. Lecouvet FE, Vande Berg BC, Maldague BE, Lebon CJ, Jamart J, Saleh M, et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. Am J Roentgenol. 1998;170(1):71–7.

    Article  CAS  Google Scholar 

  70. Sayyid S, Younan Y, Sharma G, Singer A, Morrison W, Zoga A, et al. Subchondral insufficiency fracture of the knee: grading, risk factors, and outcome. Skelet Radiol. 2019;48(12):1961–74.

    Article  Google Scholar 

  71. Sonoda K, Yamamoto T, Motomura G, Karasuyama K, Kubo Y, Iwamoto Y. Fat-suppressed T2-weighted MRI appearance of subchondral insufficiency fracture of the femoral head. Skelet Radiol. 2016;45(11):1515–21.

    Article  Google Scholar 

  72. Cox G, Einhorn TA, Tzioupis C, Giannoudis PV. Bone-turnover markers in fracture healing. J Bone Joint Surg Br. 2010;92(3):329–34.

    Article  PubMed  CAS  Google Scholar 

  73. Chen QQ, Wang WM. Expression of FGF-2 and IGF-1 in diabetic rats with fracture. Asian Pac J Trop Med. 2014;7(1):71–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales, M., Lane, J.G., Sciarretta, F., Dallo, I., Gobbi, A. (2022). Failure or Delay of Fracture Healing. In: Gobbi, A., Lane, J.G., Longo, U.G., Dallo, I. (eds) Joint Function Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-82958-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82958-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82957-5

  • Online ISBN: 978-3-030-82958-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics