Skip to main content

Radioligands for Imaging of the CNS Acetylcholinergic System

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging
  • 1882 Accesses

Abstract

There is an extensive and growing literature on PET imaging of the CNS cholinergic system. PET radiotracers have been developed for diverse molecular targets in the cholinergic system, and many have progressed to human imaging. To date, these have been used mainly in a research, rather than clinical context. But the implication that the cholinergic system plays a role in many neuropsychiatric and neurodegenerative conditions has driven a continued search for new tracers with desirable pharmacokinetic and target specificity properties. Here, we present a brief introduction to the organization of the CNS cholinergic system, some of the evidence that its dysregulation may contribute to pathological conditions of the brain, a brief overview of quantitative outcome measures for cholinergic brain imaging, and a description of tracers and targets for the cholinergic system with reviews of some of the clinical research utilizing these cholinergic tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983;214(2):170–97. https://doi.org/10.1002/cne.902140206.

    Article  CAS  PubMed  Google Scholar 

  2. Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91(6):1199–218. https://doi.org/10.1016/j.neuron.2016.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37(6):475–524.

    Article  CAS  PubMed  Google Scholar 

  4. Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron. 2007;56(1):141–54. https://doi.org/10.1016/j.neuron.2007.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M. Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A. 2016;113(8):E1089–97. https://doi.org/10.1073/pnas.1516134113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goard M, Dan Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci. 2009;12(11):1444–9. https://doi.org/10.1038/nn.2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drachman DA, Leavitt. J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974;30(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  8. Mitsushima D, Sano A, Takahashi T. A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun. 2013;4:2760. https://doi.org/10.1038/ncomms3760.

    Article  CAS  PubMed  Google Scholar 

  9. Chen N, Sugihara H, Sur M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci. 2015;18(6):892–902. https://doi.org/10.1038/nn.4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gu Z, Lamb PW, Yakel JL. Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci. 2012;32(36):12337–48. https://doi.org/10.1523/JNEUROSCI.2129-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martinello K, Huang Z, Lujan R, Tran B, Watanabe M, Cooper EC, et al. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells. Neuron. 2015;85(2):346–63. https://doi.org/10.1016/j.neuron.2014.12.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knox D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem. 2016;133:39–52. https://doi.org/10.1016/j.nlm.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S, et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron. 2016;90(5):1057–70. https://doi.org/10.1016/j.neuron.2016.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.

    Article  CAS  PubMed  Google Scholar 

  15. Norton AB, Jo YS, Clark EW, Taylor CA, Mizumori SJ. Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur J Neurosci. 2011;33(10):1885–96. https://doi.org/10.1111/j.1460-9568.2011.07649.x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mansvelder HD, De Rover M, McGehee DS, Brussaard AB. Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol. 2003;480(1–3):117–23.

    Article  CAS  PubMed  Google Scholar 

  17. Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, et al. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci. 2014;34(13):4509–18. https://doi.org/10.1523/JNEUROSCI.5071-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janickova H, Rosborough K, Al-Onaizi M, Kljakic O, Guzman MS, Gros R, et al. Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait. J Neurochem. 2017;140(5):787–98. https://doi.org/10.1111/jnc.13910.

    Article  CAS  PubMed  Google Scholar 

  19. Albin RL, Bohnen NI, Muller M, Dauer WT, Sarter M, Frey KA, et al. Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol. 2018;526(17):2884–97. https://doi.org/10.1002/cne.24541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci. 2011;5:11. https://doi.org/10.3389/fnsys.2011.00011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):5274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol. 2003;2(9):539–47.

    Article  CAS  PubMed  Google Scholar 

  23. Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev. 2006;1:CD005593. https://doi.org/10.1002/14651858.CD005593.

    Article  Google Scholar 

  24. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011;221(2):555–63. https://doi.org/10.1016/j.bbr.2010.11.058.

    Article  CAS  PubMed  Google Scholar 

  25. Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol Psychiatry. 2012;71(9):805–13. https://doi.org/10.1016/j.biopsych.2011.06.019.

    Article  CAS  PubMed  Google Scholar 

  26. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;2(8000):1403.

    Article  CAS  PubMed  Google Scholar 

  27. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977;34(2):247–65.

    Article  CAS  PubMed  Google Scholar 

  28. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–14.

    Article  CAS  PubMed  Google Scholar 

  29. Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016;43(7):1376–86. https://doi.org/10.1007/s00259-016-3349-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazere J, Meissner WG, Mayo W, Sibon I, Lamare F, Guilloteau D, et al. Progressive supranuclear palsy: in vivo SPECT imaging of presynaptic vesicular acetylcholine transporter with [123I]-iodobenzovesamicol. Radiology. 2012;265(2):537–43. https://doi.org/10.1148/radiol.12112650.

    Article  PubMed  Google Scholar 

  31. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–81. https://doi.org/10.1146/annurev.neuro.24.1.1217.

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Williams J, Nathans J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. elife. 2014;3:e02444. https://doi.org/10.7554/eLife.02444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, et al. Increased app expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron. 2006;51(1):29–42. https://doi.org/10.1016/j.neuron.2006.05.022.

    Article  CAS  PubMed  Google Scholar 

  34. Romberg C, Bussey TJ, Saksida LM. Paying more attention to attention: towards more comprehensive cognitive translation using mouse models of Alzheimer's disease. Brain Res Bull. 2013;92:49–55. https://doi.org/10.1016/j.brainresbull.2012.02.007.

    Article  PubMed  Google Scholar 

  35. Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. Brain J Neurol. 2008;131(Pt 2):409–24. https://doi.org/10.1093/brain/awm299.

    Article  Google Scholar 

  36. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31(5):234–42. https://doi.org/10.1016/j.tins.2008.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin LF, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol. 2007;78:225–46. https://doi.org/10.1016/S0074-7742(06)78008-4.

    Article  CAS  PubMed  Google Scholar 

  38. Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995;38(1):22–33. https://doi.org/10.1016/0006-3223(94)00252-X.

    Article  CAS  PubMed  Google Scholar 

  39. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63(6):630–8. https://doi.org/10.1001/archpsyc.63.6.630.

    Article  CAS  PubMed  Google Scholar 

  40. Yohn SE, Conn PJ. Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology. 2018;136(Pt C):438–48. https://doi.org/10.1016/j.neuropharm.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  41. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29. https://doi.org/10.1016/j.neuron.2012.08.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci. 2015;1349:1–45. https://doi.org/10.1111/nyas.12762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron. 2008;60(1):123–36. https://doi.org/10.1016/j.neuron.2008.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hikida T, Kitabatake Y, Pastan I, Nakanishi S. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci U S A. 2003;100(10):6169–73. https://doi.org/10.1073/pnas.0631749100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grasing K, He S, Yang Y. Long-lasting decreases in cocaine-reinforced behavior following treatment with the cholinesterase inhibitor tacrine in rats selectively bred for drug self-administration. Pharmacol Biochem Behav. 2009;94(1):169–78. https://doi.org/10.1016/j.pbb.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  46. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993;13(1):24–42.

    Article  CAS  PubMed  Google Scholar 

  47. Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;46(12):1959–72.

    CAS  PubMed  Google Scholar 

  48. Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Bio. 2001;28:595–608.

    Article  CAS  Google Scholar 

  49. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.

    Article  CAS  PubMed  Google Scholar 

  50. Gunn RN, Slifstein M, Searle GE, Price JC. Quantitative imaging of protein targets in the human brain with PET. Phys Med Biol. 2015;60(22):R363–411. https://doi.org/10.1088/0031-9155/60/22/R363.

    Article  CAS  PubMed  Google Scholar 

  51. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, et al. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease. Lancet. 1997;349(9068):1805–9. https://doi.org/10.1016/S0140-6736(96)09124-6.

    Article  CAS  PubMed  Google Scholar 

  52. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE. Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab. 1999;19(10):1150–63. https://doi.org/10.1097/00004647-199910000-00012.

    Article  CAS  PubMed  Google Scholar 

  53. Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B. Kinetic analysis of regional (S)(−)C-11-nicotine binding in normal and alzheimer brains - in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord. 1995;9(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kimes AS, Horti AG, London ED, Chefer SI, Contoreggi C, Ernst M, et al. 2-[18F]F-A-85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J. 2003;17(10):1331–3. https://doi.org/10.1096/fj.02-0492fje.

    Article  CAS  PubMed  Google Scholar 

  55. Sabri O, Becker GA, Meyer PM, Hesse S, Wilke S, Graef S, et al. First-in-human PET quantification study of cerebral alpha4beta2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[(18)F]Flubatine. NeuroImage. 2015;118:199–208. https://doi.org/10.1016/j.neuroimage.2015.05.065.

    Article  CAS  PubMed  Google Scholar 

  56. Lao PJ, Betthauser TJ, Tudorascu DL, Barnhart TE, Hillmer AT, Stone CK, et al. [(18) F]Nifene test-retest reproducibility in first-in-human imaging of alpha4beta2* nicotinic acetylcholine receptors. Synapse. 2017;71(8). https://doi.org/10.1002/syn.21981.

  57. Wong DF, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, Gao Y, et al. PET imaging of high-affinity alpha4beta2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med. 2013;54(8):1308–14. https://doi.org/10.2967/jnumed.112.108001.

    Article  CAS  PubMed  Google Scholar 

  58. Coughlin JM, Slania S, Du Y, Rosenthal HB, Lesniak WG, Minn I, et al. (18)F-XTRA PET for enhanced imaging of the extrathalamic alpha4beta2 nicotinic acetylcholine receptor. J Nucl Med. 2018;59(10):1603–8. https://doi.org/10.2967/jnumed.117.205492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wong DF, Kuwabara H, Horti AG, Roberts JM, Nandi A, Cascella N, et al. Brain PET imaging of alpha7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int J Neuropsychopharmacol. 2018;21(7):656–67. https://doi.org/10.1093/ijnp/pyy021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ettrup A, Mikkelsen JD, Lehel S, Madsen J, Nielsen EO, Palner M, et al. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J Nucl Med. 2011;52(9):1449–56. https://doi.org/10.2967/jnumed.111.088815.

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa M, Nishiyama S, Tsukada H, Hatano K, Fuchigami T, Yamaguchi H, et al. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor alpha7 subtype. Nucl Med Biol. 2010;37(3):347–55. https://doi.org/10.1016/j.nucmedbio.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  62. Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii K, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping alpha7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23(3):301–9. https://doi.org/10.1007/s12149-009-0240-x.

    Article  CAS  PubMed  Google Scholar 

  63. Hillmer AT, Zheng MQ, Li S, Scheunemann M, Lin SF, Holden D, et al. PET imaging evaluation of [(18)F]DBT-10, a novel radioligand specific to alpha7 nicotinic acetylcholine receptors, in nonhuman primates. Eur J Nucl Med Mol Imaging. 2016;43(3):537–47. https://doi.org/10.1007/s00259-015-3209-0.

    Article  CAS  PubMed  Google Scholar 

  64. Deuther-Conrad W, Fischer S, Hiller A, Becker G, Cumming P, Xiong G, et al. Assessment of alpha7 nicotinic acetylcholine receptor availability in juvenile pig brain with [(1)(8)F]NS10743. Eur J Nucl Med Mol Imaging. 2011;38(8):1541–9. https://doi.org/10.1007/s00259-011-1808-y.

    Article  CAS  PubMed  Google Scholar 

  65. Toyohara J, Ishiwata K, Sakata M, Wu J, Nishiyama S, Tsukada H, et al. In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One. 2010;5(2):e8961. https://doi.org/10.1371/journal.pone.0008961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zubieta JK, Koeppe RA, Mulholland GK, Kuhl DE, Frey KA. Quantification of muscarinic cholinergic receptors with [11C]NMPB and positron emission tomography: method development and differentiation of tracer delivery from receptor binding. J Cereb Blood Flow Metab. 1998;18(6):619–31. https://doi.org/10.1097/00004647-199806000-00004.

    Article  CAS  PubMed  Google Scholar 

  67. Tsukada H, Takahashi K, Miura S, Nishiyama S, Kakiuchi T, Ohba H, et al. Evaluation of novel PET ligands (+)N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB) and its stereoisomer [11C](−)3-MPB for muscarinic cholinergic receptors in the conscious monkey brain: a PET study in comparison with. Synapse. 2001;39(2):182–92. https://doi.org/10.1002/1098-2396(200102)39:2<182::AID-SYN10>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  68. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC. Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cerebr Blood F Met. 1998;18(10):1130–42.

    Article  CAS  Google Scholar 

  69. Naganawa M, Nabulsi NB, Henry S, Matuskey D, Lin SF, Slieker L, et al. First in human assessment of the novel M1 muscarinic acetylcholine receptor PET radiotracer (11)C-LSN3172176. J Nucl Med. 2020; https://doi.org/10.2967/jnumed.120.246967.

  70. Mulholland GK, Wieland DM, Kilbourn MR, Frey KA, Sherman PS, Carey JE, et al. [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse. 1998;30(3):263–74. https://doi.org/10.1002/(SICI)1098-2396(199811)30:3<263::AID-SYN4>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  71. Yue X, Bognar C, Zhang X, Gaehle GG, Moerlein SM, Perlmutter JS, et al. Automated production of [(1)(8)F]VAT suitable for clinical PET study of vesicular acetylcholine transporter. Appl Radiat Isot. 2016;107:40–6. https://doi.org/10.1016/j.apradiso.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  72. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980;231(1):E69–82.

    Google Scholar 

  73. Richter N, Beckers N, Onur OA, Dietlein M, Tittgemeyer M, Kracht L, et al. Effect of cholinergic treatment depends on cholinergic integrity in early Alzheimer's disease. Brain J Neurol. 2018;141(3):903–15. https://doi.org/10.1093/brain/awx356.

    Article  Google Scholar 

  74. Hirano S, Shinotoh H, Shimada H, Ota T, Sato K, Tanaka N, et al. Voxel-based acetylcholinesterase PET study in Early and late onset Alzheimer's disease. J Alzheimers Dis. 2018;62(4):1539–48. https://doi.org/10.3233/JAD-170749.

    Article  CAS  PubMed  Google Scholar 

  75. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999;52(4):691–9. https://doi.org/10.1212/wnl.52.4.691.

    Article  CAS  PubMed  Google Scholar 

  76. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson's disease and parkinsonian dementia. J Neurol. 2006;253(2):242–7. https://doi.org/10.1007/s00415-005-0971-0.

    Article  CAS  PubMed  Google Scholar 

  77. Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73(4):273–8. https://doi.org/10.1212/WNL.0b013e3181ab2b58.

    Article  CAS  PubMed  Google Scholar 

  78. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65(11):1716–22. https://doi.org/10.1212/01.wnl.0000191154.78131.f6.

    Article  CAS  PubMed  Google Scholar 

  79. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003;60(12):1745–8. https://doi.org/10.1001/archneur.60.12.1745.

    Article  PubMed  Google Scholar 

  80. Gilman S, Koeppe RA, Nan B, Wang CN, Wang X, Junck L, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology. 2010;74(18):1416–23. https://doi.org/10.1212/WNL.0b013e3181dc1a55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009;73(20):1670–6. https://doi.org/10.1212/WNL.0b013e3181c1ded6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaeverbeke J, Evenepoel C, Bruffaerts R, Van Laere K, Bormans G, Dries E, et al. Cholinergic depletion and basal forebrain volume in primary progressive aphasia. Neuroimage Clin. 2017;13:271–9. https://doi.org/10.1016/j.nicl.2016.11.027.

    Article  PubMed  Google Scholar 

  83. Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect. 1990;2(3):215–24. https://doi.org/10.1007/BF02257652.

    Article  CAS  PubMed  Google Scholar 

  84. Nyback H, Halldin C, Ahlin A, Curvall M, Eriksson L. PET studies of the uptake of (S)- and (R)-[11C]nicotine in the human brain: difficulties in visualizing specific receptor binding in vivo. Psychopharmacology. 1994;115(1–2):31–6. https://doi.org/10.1007/BF02244748.

    Article  CAS  PubMed  Google Scholar 

  85. Fujita M, Seibyl JP, Vaupel DB, Tamagnan G, Early M, Zoghbi SS, et al. Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123i]5-i-A-85380 in healthy human subjects. Eur J Nucl Med Mol Imaging. 2002;29(2):183–90. https://doi.org/10.1007/s00259-001-0695-z.

    Article  CAS  PubMed  Google Scholar 

  86. Horti AG, Scheffel U, Koren AO, Ravert HT, Mathews WB, Musachio JL, et al. 2-[18F]Fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nucl Med Biol. 1998;25(7):599–603.

    Article  CAS  PubMed  Google Scholar 

  87. Mukhin AG, Kimes AS, Chefer SI, Matochik JA, Contoreggi CS, Horti AG, et al. Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J Nucl Med. 2008;49(10):1628–35. https://doi.org/10.2967/jnumed.108.050716.

    Article  PubMed  Google Scholar 

  88. Mitkovski S, Villemagne VL, Novakovic KE, O'Keefe G, Tochon-Danguy H, Mulligan RS, et al. Simplified quantification of nicotinic receptors with 2[18F]F-A-85380 PET. Nucl Med Biol. 2005;32(6):585–91. https://doi.org/10.1016/j.nucmedbio.2005.04.013.

    Article  CAS  PubMed  Google Scholar 

  89. Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging. 2008;35(Suppl 1):S30–45. https://doi.org/10.1007/s00259-007-0701-1.

    Article  CAS  PubMed  Google Scholar 

  90. Okada H, Ouchi Y, Ogawa M, Futatsubashi M, Saito Y, Yoshikawa E, et al. Alterations in alpha4beta2 nicotinic receptors in cognitive decline in Alzheimer's aetiopathology. Brain J Neurol. 2013;136(Pt 10):3004–17. https://doi.org/10.1093/brain/awt195.

    Article  Google Scholar 

  91. Kas A, Bottlaender M, Gallezot JD, Vidailhet M, Villafane G, Gregoire MC, et al. Decrease of nicotinic receptors in the nigrostriatal system in Parkinson's disease. J Cereb Blood Flow Metab. 2009;29(9):1601–8. https://doi.org/10.1038/jcbfm.2009.74.

    Article  CAS  PubMed  Google Scholar 

  92. Meyer PM, Strecker K, Kendziorra K, Becker G, Hesse S, Woelpl D, et al. Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry. 2009;66(8):866–77. https://doi.org/10.1001/archgenpsychiatry.2009.106.

    Article  CAS  PubMed  Google Scholar 

  93. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry. 2006;63(8):907–15. https://doi.org/10.1001/archpsyc.63.8.907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brody AL, Mukhin AG, La Charite J, Ta K, Farahi J, Sugar CA, et al. Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers. Int J Neuropsychopharmacol. 2013;16(5):957–66. https://doi.org/10.1017/S1461145712001022.

    Article  CAS  PubMed  Google Scholar 

  95. Garibotto V, Wissmeyer M, Giavri Z, Goldstein R, Seimbille Y, Seeck M, et al. Nicotinic receptor abnormalities as a biomarker in idiopathic generalized epilepsy. Eur J Nucl Med Mol Imaging. 2019;46(2):385–95. https://doi.org/10.1007/s00259-018-4175-0.

    Article  CAS  PubMed  Google Scholar 

  96. Garibotto V, Corpataux T, Dupuis-Lozeron E, Haller S, Fontolliet T, Picard F. Higher nicotinic receptor availability in the cingulo-insular network is associated with lower cardiac parasympathetic tone. J Comp Neurol. 2019;527(18):3014–22. https://doi.org/10.1002/cne.24726.

    Article  CAS  PubMed  Google Scholar 

  97. Bhatt S, Hillmer AT, Nabulsi N, Matuskey D, Lim K, Lin SF, et al. Evaluation of (−)-[(18) F]Flubatine-specific binding: Implications for reference region approaches. Synapse. 2018;72(3). https://doi.org/10.1002/syn.22016.

  98. Wong DF, Kuwabara H, Pomper M, Holt DP, Brasic JR, George N, et al. Human brain imaging of alpha7 nAChR with [(18)F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol Imaging Biol. 2014;16(5):730–8. https://doi.org/10.1007/s11307-014-0779-3.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hillmer AT, Li S, Zheng MQ, Scheunemann M, Lin SF, Nabulsi N, et al. PET imaging of alpha7 nicotinic acetylcholine receptors: a comparative study of [(18)F]ASEM and [(18)F]DBT-10 in nonhuman primates, and further evaluation of [(18)F]ASEM in humans. Eur J Nucl Med Mol Imaging. 2017;44(6):1042–50. https://doi.org/10.1007/s00259-017-3621-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Coughlin JM, Rubin LH, Du Y, Rowe SP, Crawford JL, Rosenthal HB, et al. High availability of the alpha7-nicotinic acetylcholine receptor in brains of individuals with mild cognitive impairment: a pilot study using (18)F-ASEM PET. J Nucl Med. 2020;61(3):423–6. https://doi.org/10.2967/jnumed.119.230979.

    Article  CAS  PubMed  Google Scholar 

  101. Coughlin J, Du Y, Crawford JL, Rubin LH, Behnam Azad B, Lesniak WG, et al. The availability of the alpha7 nicotinic acetylcholine receptor in recent-onset psychosis: a study using (18)F-ASEM PET. J Nucl Med. 2018; https://doi.org/10.2967/jnumed.118.213686.

  102. Kiesewetter DO, Lee J, Lang L, Park SG, Paik CH, Eckelman WC. Preparation of 18F-labeled muscarinic agonist with M2 selectivity. J Med Chem. 1995;38(1):5–8. https://doi.org/10.1021/jm00001a002.

    Article  CAS  PubMed  Google Scholar 

  103. Jagoda E, Kiesewetter D, Shimoji K, Yamada M, Gomeza J, Wess J, et al. Regional brain uptake of the muscarinic ligand, (FFP)-F-18-TZTP, is decreased in M2 knockout but not in M3 and M4 knockout mice. J Nucl Med. 2001;42(5):143P.

    Google Scholar 

  104. Podruchny TA, Connolly C, Bokde A, Herscovitch P, Eckelman WC, Kiesewetter DO, et al. In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse. 2003;48(1):39–44. https://doi.org/10.1002/syn.10165.

    Article  CAS  PubMed  Google Scholar 

  105. Cohen RM, Podruchny TA, Bokde AL, Carson RE, Herscovitch P, Kiesewetter DO, et al. Higher in vivo muscarinic-2 receptor distribution volumes in aging subjects with an apolipoprotein E-epsilon4 allele. Synapse. 2003;49(3):150–6. https://doi.org/10.1002/syn.10225.

    Article  CAS  PubMed  Google Scholar 

  106. Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, et al. Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry. 2006;63(7):741–7. https://doi.org/10.1001/archpsyc.63.7.741.

    Article  CAS  PubMed  Google Scholar 

  107. Cannon DM, Klaver JK, Gandhi SK, Solorio G, Peck SA, Erickson K, et al. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry. 2011;16(4):407–18. https://doi.org/10.1038/mp.2010.24.

    Article  CAS  PubMed  Google Scholar 

  108. Mogg AJ, Eessalu T, Johnson M, Wright R, Sanger HE, Xiao H, et al. In vitro pharmacological characterization and in vivo validation of LSN3172176 a novel M1 selective muscarinic receptor agonist tracer molecule for positron emission tomography. J Pharmacol Exp Ther. 2018;365(3):602–13. https://doi.org/10.1124/jpet.117.246454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nabulsi NB, Holden D, Zheng MQ, Bois F, Lin SF, Najafzadeh S, et al. Evaluation of (11)C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates. J Nucl Med. 2019;60(8):1147–53. https://doi.org/10.2967/jnumed.118.222034.

    Article  CAS  PubMed  Google Scholar 

  110. Gallezot JD, Esterlis I, Bois F, Zheng MQ, Lin SF, Kloczynski T, et al. Evaluation of the sensitivity of the novel alpha4beta2* nicotinic acetylcholine receptor PET radioligand 18F-(−)-NCFHEB to increases in synaptic acetylcholine levels in rhesus monkeys. Synapse. 2014;68(11):556–64. https://doi.org/10.1002/syn.21767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hillmer AT, Esterlis I, Gallezot JD, Bois F, Zheng MQ, Nabulsi N, et al. Imaging of cerebral alpha4beta2* nicotinic acetylcholine receptors with (−)-[(18)F]Flubatine PET: implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. NeuroImage. 2016;141:71–80. https://doi.org/10.1016/j.neuroimage.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  112. Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450(2):265–74. https://doi.org/10.1042/BJ20121662.

    Article  CAS  PubMed  Google Scholar 

  113. Albin RL, Minderovic C, Koeppe RA. Normal striatal vesicular acetylcholine transporter expression in Tourette syndrome. eNeuro. 2017;4(4). https://doi.org/10.1523/ENEURO.0178-17.2017.

  114. Aghourian M, Legault-Denis C, Soucy JP, Rosa-Neto P, Gauthier S, Kostikov A, et al. Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [(18)F]-FEOBV. Mol Psychiatry. 2017;22(11):1531–8. https://doi.org/10.1038/mp.2017.183.

    Article  CAS  PubMed  Google Scholar 

  115. Bohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT, et al. Cholinergic system changes of falls and freezing of gait in Parkinson's disease. Ann Neurol. 2019;85(4):538–49. https://doi.org/10.1002/ana.25430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nejad-Davarani S, Koeppe RA, Albin RL, Frey KA, Muller M, Bohnen NI. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [(18)F]-FEOBV. Mol Psychiatry. 2019;24(3):322–7. https://doi.org/10.1038/s41380-018-0130-5.

    Article  PubMed  Google Scholar 

  117. Tu Z, Zhang X, Jin H, Yue X, Padakanti PK, Yu L, et al. Synthesis and biological characterization of a promising F-18 PET tracer for vesicular acetylcholine transporter. Bioorg Med Chem. 2015;23(15):4699–709. https://doi.org/10.1016/j.bmc.2015.05.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Slifstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slifstein, M., Abi-Dargham, A. (2022). Radioligands for Imaging of the CNS Acetylcholinergic System. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics