Skip to main content

The Role of RNA-Binding Proteins in Cancers

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

RNA-binding proteins (RBPs) play fundamental roles in most aspects of cell regulation, specifically in post-transcriptional modifications, thanks to their versatile RNA-binding domains and structural adaptability. This versatility permits RBPs to regulate the fate of numerous RNA transcripts within a cell to maintain cellular balance. They establish dynamic interactions with coding RNAs and non-coding RNAs, as well as with other proteins, establishing functional units known as ribonucleoprotein complexes (RNPs). These RNPs are responsible for regulating processes such as RNA splicing, stability, or polyadenylation of mRNA and localization, post-translation modifications, and RNA degradation. Disruptions in RBP-RNA networks lead to cancer advancement, though our understanding of their contributions remains fragmented.

Cancer is a complicated and diverse disease primarily driven by genetic mutations impacting oncogenic or tumor-suppressive pathways and has seen a shift in perspective over the last two decades. It has become increasingly evident that cancer cells exploit post-transcriptional mechanisms to modulate protein expression levels rapidly and effectively. This enables the cells to adapt swiftly to both internal and external signals, facilitating their survival and growth in the local microenvironment.

Furthermore, RBPs are mostly dysregulated in numerous classes of cancer. This dysregulation has significant consequences and effects on the expression and function of both oncogenic and tumor-suppressive proteins. Consequently, unraveling the intricate network of interactions between RBPs and their RNA targets associated with cancer provides valuable insights into tumor biology. Additionally, it may reveal novel therapeutic targets for cancer treatment. In this chapter, we review a comprehensive perspective on how RBPs contribute to cancer initiation, progression, and metastasis and discuss their potential role in the diagnosis and treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnold M, Abnet CC, Neale RE et al (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349. e315

    Article  PubMed  Google Scholar 

  • Arslan Ă–, Soylu NK, Akillilar PT et al (2021) Coiled-coil domain-containing protein-124 (Ccdc124) is a novel RNA binding factor up-regulated in endometrial, ovarian, and urinary bladder cancers. Cancer Biomark 31(2):149–164

    Article  CAS  PubMed  Google Scholar 

  • Avolio R, Järvelin AI, Mohammed S et al (2018) Protein syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res 46(22):12067–12086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Yang C, Wu R et al (2019) YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol 9:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian S, Ni W, Zhu M et al (2020) Identification and validation of the N6-methyladenosine RNA methylation regulator YTHDF1 as a novel prognostic marker and potential target for hepatocellular carcinoma. Front Mol Biosci 7:604766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cava C, Armaos A, Lang B et al (2022) Identification of long non-coding RNAs and RNA binding proteins in breast cancer subtypes. Sci Rep 12(1):693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Gao S, Liu W et al (2021a) RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 160(4):1284–1300. e1216

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Liu X-Q, Lin X et al (2021b) Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncolytics 20:228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Cheung H, Lau HC-H et al (2022) N6-methyladenosine RNA-binding protein YTHDF1 in gastrointestinal cancers: Function, molecular mechanism and clinical implication. Cancers 14(14):3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Zhan X, Xu Y et al (2022) DNA methylation of RNA-binding protein for multiple splicing 2 functions as diagnosis biomarker in gastric cancer pathogenesis and its potential clinical significance. Bioengineered 13(2):4347–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy E (2023) ACS report shows prostate cancer on the rise, cervical cancer on the decline. Renal & Urology News: NA-NA

    Google Scholar 

  • Craze ML, Cheung H, Jewa N et al (2018) MYC regulation of glutamine–proline regulatory axis is key in luminal B breast cancer. Br J Cancer 118(2):258–265

    Article  CAS  PubMed  Google Scholar 

  • Dang H, Takai A, Forgues M et al (2017) Oncogenic activation of the RNA binding protein NELFE and MYC signaling in hepatocellular carcinoma. Cancer Cell 32(1):101–114.e108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fragomeni SM, Sciallis A, Jeruss JS (2018) Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin 27(1):95–120

    Article  Google Scholar 

  • Gerdes J, Schwab U, Lemke H et al (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri AN, Zacchini F, Onofrillo C et al (2020) DKC1 overexpression induces a more aggressive cellular behavior and increases intrinsic ribosomal activity in immortalized mammary gland cells. Cancers 12(12):3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Yan S, Wei S et al (2020) YTHDF 1-mediated translation amplifies Wnt-driven intestinal stemness. EMBO Rep 21(4):e49229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Castello A, Schwarzl T et al (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19(5):327–341

    Article  CAS  PubMed  Google Scholar 

  • Ignatov A, Eggemann H, Burger E et al (2018) Patterns of breast cancer relapse in accordance to biological subtype. J Cancer Res Clin Oncol 144:1347–1355

    Article  PubMed  Google Scholar 

  • Jankowsky E, Harris ME (2015) Specificity and nonspecificity in RNA-protein interactions. Nat Rev Mol Cell Biol 16(9):533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanth P, Inadomi JM (2021) Screening and prevention of colorectal cancer. BMJ 374:n1855

    Article  PubMed  Google Scholar 

  • Kawagoe K, Wada M, Idichi T et al (2020) Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer. J Hum Genet 65(8):647–656

    Article  PubMed  Google Scholar 

  • Kim Y-M, Hong S (2021) Controversial roles of cold-inducible RNA-binding protein in human cancer. Int J Oncol 59(5):1–11

    Article  Google Scholar 

  • Li XX, Shi L, Zhou XJ et al (2017) The role of c-Myc-RBM38 loop in the growth suppression in breast cancer. J Exp Clin Cancer Res 36(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Li N, Gao L et al (2020) Integrated analysis of the roles and prognostic value of RNA binding proteins in lung adenocarcinoma. PeerJ 8:e8509

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Li C, Jin L et al (2019) The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit 25:9435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Yang S, Cheng Y-P et al (2020) The N6-methyladenosine (m6A) methylation gene YTHDF1 reveals a potential diagnostic role for gastric cancer. Cancer Manag Res 12:11953–11964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8(6):479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Cao M, Gao F et al (2021) YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Exp Hematol Oncol 10(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias C, Zambalde EP, Rask P et al (2019) Long non-coding RNAs differential expression in breast cancer subtypes: what do we know? Clin Genet 95(5):558–568

    Article  CAS  PubMed  Google Scholar 

  • Morgan E, Arnold M, Gini A et al (2023) Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 72(2):338–344

    Article  PubMed  Google Scholar 

  • Nyati KK, Agarwal RG, Sharma P et al (2019) Arid5a regulation and the roles of arid5a in the inflammatory response and disease. Front Immunol 10:2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3(7):506–528

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Pi J, Wang W, Ji M et al (2021) YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7. Cancer Res 81(10):2651–2665

    Article  CAS  PubMed  Google Scholar 

  • Pusztai L, Mazouni C, Anderson K et al (2006) Molecular classification of breast cancer: limitations and potential. Oncologist 11(8):868–877

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Ni H, Liu Y et al (2020) RNA-binding proteins in tumor progression. J Hematol Oncol 13(1):1–23

    Article  Google Scholar 

  • Qu R, Chen X, Zhang C (2018) LncRNA ZEB1-AS1/miR-409-3p/ZEB1 feedback loop is involved in the progression of non-small cell lung cancer. Biochem Biophys Res Commun 507(1–4):450–456

    Article  CAS  PubMed  Google Scholar 

  • Sahu A, Singhal U, Chinnaiyan AM (2015) Long noncoding RNAs in cancer: from function to translation. Trends Cancer 1(2):93–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuschel K, Helwig M, HĂĽttelmaier S et al (2020) RNA-binding proteins in acute leukemias. Int J Mol Sci 21(10):3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  • Sommer G, Heise T (2021) Role of the RNA-binding protein La in cancer pathobiology. RNA Biol 18(2):218–236

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Quader S, Ono R et al (2020) Molecular network profiling in intestinal-and diffuse-type gastric cancer. Cancers 12(12):3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truitt ML, Ruggero D (2016) New frontiers in translational control of the cancer genome. Nat Rev Cancer 16(5):288–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoutsou PG, Vozenin M-C, Durham A-D et al (2017) How could breast cancer molecular features contribute to locoregional treatment decision making? Crit Rev Oncol Hematol 110:43–48

    Article  PubMed  Google Scholar 

  • Uddin MB, Wang Z, Yang C (2021) The m6A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis. Mol Cancer 20(1):1–18

    Article  Google Scholar 

  • Wang X, Zhao BS, Roundtree IA et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZL, Li B, Luo YX et al (2018) Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep 22(1):286–298

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Lu SX, Pastore A et al (2019) Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35(3):369–384.e367

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Gao S, Zeng Y et al (2022) N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162(4):1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Xu L (2022) The RNA-binding protein HuR in human cancer: a friend or foe? Adv Drug Deliv Rev 184:114179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zheng S, Yao J et al (2017) Decreased expression of protocadherin 20 is associated with poor prognosis in hepatocellular carcinoma. Oncotarget 8(2):3018

    Article  PubMed  Google Scholar 

  • Wu X, Zhang X, Tao L et al (2020) Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma. BioMed Res Int 2020:2053902

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu D, Shao J, Song H et al (2020) The YTH domain family of N6-methyladenosine “readers” in the diagnosis and prognosis of colonic adenocarcinoma. BioMed Res Int 2020:9502560

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, He X, Deng J et al (2021) Comprehensive analysis of the immune infiltrates and PD-L1 of m6A RNA methylation regulators in hepatocellular carcinoma. Front Cell Dev Biol 9:681745

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Lin C, Jin C et al (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500(7464):598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhu R, Zhao X et al (2019) Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 38(25):4915–4931

    Article  CAS  PubMed  Google Scholar 

  • Yao A, Xiang Y, Si YR et al (2019) PKM2 promotes glucose metabolism through a let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem 120(4):6542–6554

    Article  CAS  PubMed  Google Scholar 

  • Yue B, Song C, Yang L et al (2019) METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 18(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Weng W, Zhang Q et al (2018) The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 11(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Zhang Z, Zhang S et al (2018) RNA binding protein RNPC1 inhibits breast cancer cell metastasis via activating STARD13-correlated ceRNA network. Mol Pharm 15(6):2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Zong F-Y, Fu X, Wei W-J et al (2014) The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet 10(4):e1004289

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shafeghat, M., Akrami, A., Rezaei, N. (2024). The Role of RNA-Binding Proteins in Cancers. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_363-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_363-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics