Skip to main content

Evaluating the Role of RUNX2 in Cancer and Its Potential as a Therapeutic Target

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

RUNX2, the transcription factor of the RUNX family, plays a critical role in homeostasis and a variety of pathological conditions, including cancer. RUNX2 was first described as a master transcription factor, playing a vital role in bone and cartilage development. Beyond its well-established role in maintaining osteocytes and osteoblasts balance, other physiological processes including the development of breast and prostate cancer are also regulated by RUNX2. The role of RUNX2 in cancer has been well established in several cancer types, including breast cancer, hepatocellular carcinoma, and melanoma. Increased expression of RUNX2 has been found during cancer development, suggesting a role of RUNX2 in promoting aggressiveness and metastatic spreading. Important advances demonstrate that RUNX2 is involved in controlling cancer invasion and metastasis via the modulation of key cellular and molecular processes. At the cellular level, RUNX2 is involved in the control of epithelial-mesenchymal (EMT) transition and promotion of cancer cell migration and invasion, the key process, leading to tumor progression. Multiple signaling pathways, including P13K/AKT pathway have been reported to mediate the role of RUNX2 in cancer invasion. Furthermore, new molecular and immunological mechanisms are being investigated on the role of RUNX2 in cancer promotion, indicating that exploring RUNX2 may represent a new avenue for developing successful anticancer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashe H, Krakowiak P, Hasterok S, Sleppy R, Roller DG, Gioeli D (2021) Role of the runt-related transcription factor (RUNX) family in prostate cancer. FEBS J 288(21):6112–6126

    Google Scholar 

  • Bai X, Meng L, Sun H, Li Z, Zhang X, Hua S (2017) MicroRNA-196b inhibits cell growth and metastasis of lung cancer cells by targeting Runx2. Cell Physiol Biochem 43(2):757–767

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Yang Y, Yan Y, Zhong J, Blee AM, Pan Y et al (2019) RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics 9(12):3459–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale TA (2020) FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 8(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank U, Karlsson S (2011) The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25(9):1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C et al (2010) Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol Dis 45(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Boregowda RK, Olabisi OO, Abushahba W, Jeong BS, Haenssen KK, Chen W et al (2014) RUNX2 is overexpressed in melanoma cells and mediates their migration and invasion. Cancer Lett 348(1–2):61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boregowda RK, Medina DJ, Markert E, Bryan MA, Chen W, Chen S et al (2016) The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 7(20):29689–29707

    Article  PubMed  PubMed Central  Google Scholar 

  • Brubaker KD, Vessella RL, Brown LG, Corey E (2003) Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate 56(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Sun B, Zhao X, Zhang Y, Gu Q, Liang X et al (2017) The expression and functional significance of Runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial–mesenchymal transition. Int J Mol Sci 18(3):500

    Article  PubMed Central  Google Scholar 

  • Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ et al (2019) Chondrocyte-specific RUNX2 overexpression accelerates post-traumatic osteoarthritis progression in adult mice. J Bone Miner Res 34(9):1676–1689

    Article  CAS  PubMed  Google Scholar 

  • Cecconi D, Brandi J, Manfredi M, Serena M, Dalle Carbonare L, Deiana M et al (2019) Runx2 stimulates neoangiogenesis through the Runt domain in melanoma. Sci Rep 9(1):8052

    Article  PubMed  PubMed Central  Google Scholar 

  • Champagne N, Pelletier N, Yang X-J (2001) The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 20(3):404–409

    Article  CAS  PubMed  Google Scholar 

  • Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D et al (2011) Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res 13(6):R127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X et al (2009) Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res 15(13):4322–4335

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Solal KA, Boregowda RK, Lasfar A (2015) RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 14(1):137

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789

    Article  CAS  PubMed  Google Scholar 

  • Enomoto E, Kamura Y, Nohara M, Kaneko A, Tsuji H, Hasegawa H et al (2000) A case of giant sebaceous gland carcinoma without adequate treatment. Nippon Ganka Gakkai Zasshi 104(10):740–745

    CAS  PubMed  Google Scholar 

  • Ferrari N, Mcdonald L, Morris JS, Cameron ER, Blyth K (2013) RUNX2 in mammary gland development and breast cancer. J Cell Physiol 228(6):1137–1142

    Article  CAS  PubMed  Google Scholar 

  • Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP et al (2020) RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol 235(10):7261–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge C, Zhao G, Li Y, Li H, Zhao X, Pannone G et al (2016) Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene 35(3):366–376

    Article  CAS  PubMed  Google Scholar 

  • Gowda PS, Wildman BJ, Trotter TN, Xu X, Hao X, Hassan MQ et al (2018) Runx2 suppression by miR-342 and miR-363 inhibits multiple myeloma progression. Mol Cancer Res 16(7):1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Guo W, Li S, Dai W, Zhang N, Zhao T et al (2016) Serum miR-16: a potential biomarker for predicting melanoma prognosis. J Investig Dermatol 136(5):985–993

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Zhou K, Wang Q, Huang Y, Ji J, Peng Y et al (2021) The transcription factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis. Cancer Sci 112:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Jin L, Ma X, Hao Q, Lin H, Zhang Z (2020) Identification of the hub genes RUNX2 and FN1 in gastric cancer. Open Med 15(1):403–412

    Article  CAS  Google Scholar 

  • Heidari N, Miller AV, Hicks MA, Marking CB, Harada H (2012) Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death Dis 3(7):e349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herreño AM, Ramírez AC, Chaparro VP, Fernandez MJ, Cañas A, Morantes CF et al (2019) Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer: epigenetic control of the RUNX2 P1 promoter. Tumor Biol 41(5):101042831985101

    Article  Google Scholar 

  • Huang J, Chang S, Lu Y, Wang J, Si Y, Zhang L et al (2019) Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int 19(1):306

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z et al (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum 54(8):2462–2470

    Article  CAS  PubMed  Google Scholar 

  • Kirman DC, Renganathan B, Chui WK, Chen MW, Kaya NA, Ge R (2022) Cell surface nucleolin is a novel ADAMTS5 receptor mediating endothelial cell apoptosis. Cell Death Dis 13(2):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi S-I, Sasaki D, Hsieh T-H, Taira N, Arakaki N, Yamasaki S et al (2018) JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat Commun 9(1):5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Komori T (2002) Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 87(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2020) Molecular mechanism of Runx2-dependent bone development. Mol Cells 43(2):168–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo Y-H, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH (2009) Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice. Blood 113(14):3323–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G et al (2011) Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem 112(12):3582–3593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ, Lu JT, Tan CC, Wang QS, Feng YM (2016) RUNX2 promotes breast cancer bone metastasis by increasing integrin alpha5-mediated colonization. Cancer Lett 380(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang D, Yuan Y, Min J (2017a) New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther 19(1):248

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Wang L, Tan G, Guo Z, Liu L, Yang M et al (2017b) MicroRNA-218 inhibits proliferation and invasion in ovarian cancer by targeting Runx2. Oncotarget 8(53):91530–91541

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ge C, Franceschi RT (2021) Role of Runx2 in prostate development and stem cell function. Prostate 81(4):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim M, Zhong C, Yang S, Bell AM, Cohen MB, Roy-Burman P (2010) Runx2 regulates survivin expression in prostate cancer cells. Lab Investig 90(2):222–233

    Article  CAS  PubMed  Google Scholar 

  • Manzotti G, Torricelli F, Donati B, Sancisi V, Gugnoni M, Ciarrocchi A (2019) HDACs control RUNX2 expression in cancer cells through redundant and cell context-dependent mechanisms. J Exp Clin Cancer Res 38(1):346

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthijssens F, Sharma ND, Nysus M, Nickl CK, Kang H, Perez DR et al (2021) RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. J Clin Investig 131(6):e141566

    Article  CAS  PubMed Central  Google Scholar 

  • Newton AH, Pask AJ (2020) Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol 3(1):771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu D-F, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K et al (2012) Transcription factor Runx2 is a regulator of epithelial–mesenchymal transition and invasion in thyroid carcinomas. Lab Investig 92(8):1181–1190

    Article  CAS  PubMed  Google Scholar 

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745

    Article  PubMed  Google Scholar 

  • Owens TW, Rogers RL, Best S, Ledger A, Mooney AM, Ferguson A et al (2014) Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res 74(18):5277–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A (2013) Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 4:e610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pande S, Browne G, Padmanabhan S, Zaidi SK, Lian JB, van Wijnen AJ et al (2013) Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J Cell Physiol 228(8):1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang XJ (2002) MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21(17):2729–2740

    Article  CAS  PubMed  Google Scholar 

  • Pokrovskaya LA, Nadezhdin SV, Zubareva EV, Burda YE, Gnezdyukova ES (2020) Expression of RUNX2 and Osterix in rat mesenchymal stem cells during culturing in osteogenic-conditioned medium. Bull Exp Biol Med 169(4):571–575

    Article  CAS  PubMed  Google Scholar 

  • Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS et al (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25(19):8581–8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap J, Imbalzano KM, Underwood JM, Cohet N, Gokul K, Akech J et al (2009) Ectopic runx2 expression in mammary epithelial cells disrupts formation of normal acini structure: implications for breast cancer progression. Cancer Res 69(17):6807–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulica R, Cohen Solal K, Lasfar A (2021) Role of RUNX2 in melanoma: a new player in tumor progression and resistance to therapy. In: Melanoma. IntechOpen, London

    Google Scholar 

  • Qin X, Jiang Q, Nagano K, Moriishi T, Miyazaki T, Komori H et al (2020) Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts. PLoS Genet 16(11):e1009169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarakkody AS, Shin NY, Cantor AB (2020) Role of RUNX family transcription factors in DNA damage response. Mol Cells 43(2):99–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancisi V, Borettini G, Maramotti S, Ragazzi M, Tamagnini I, Nicoli D et al (2012) Runx2 isoform I controls a panel of proinvasive genes driving aggressiveness of papillary thyroid carcinomas. J Clin Endocrinol Metab 97(10):E2006–E2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A (2015) Histone deacetylase inhibitors repress tumoral expression of the proinvasive factor RUNX2. Cancer Res 75(9):1868–1882

    Article  CAS  PubMed  Google Scholar 

  • Sase T, Suzuki T, Miura K, Shiiba K, Sato I, Nakamura Y et al (2012) Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer 131(10):2284–2293

    Article  CAS  PubMed  Google Scholar 

  • Selvamurugan N, Kwok S, Partridge NC (2004) Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem 279(26):27764–27773

    Article  CAS  PubMed  Google Scholar 

  • Sheng K, Li Y (2019) LncRNA TUG1 promotes the development of osteosarcoma through RUNX2. Exp Ther Med 18:3002–3008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi N, Zhang J, Chen SY (2017) Runx2, a novel regulator for goblet cell differentiation and asthma development. FASEB J 31(1):412–420

    Article  CAS  PubMed  Google Scholar 

  • Si W, Zhou J, Zhao Y, Zheng J, Cui L (2020) SET7/9 promotes multiple malignant processes in breast cancer development via RUNX2 activation and is negatively regulated by TRIM21. Cell Death Dis 11(2):151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock M, Otto F (2005) Control of RUNX2 isoform expression: the role of promoters and enhancers. J Cell Biochem 95(3):506–517

    Article  CAS  PubMed  Google Scholar 

  • Su B, Gao L, Baranowski C, Gillard B, Wang J, Ransom R et al (2014) A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer. PLoS One 9(7):e101411

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Vitolo M, Passaniti A (2001) Runt-related gene 2 in endothelial cells: inducible expression and specific regulation of cell migration and invasion. Cancer Res 61(13):4994–5001

    CAS  PubMed  Google Scholar 

  • Sun J, Li J, Li C, Yu Y (2015a) Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep 12(3):4230–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SS, Zhang L, Yang J, Zhou X (2015b) Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 361(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sun C-C, Li S-J, Chen Z-L, Li G, Zhang Q, Li D-J (2019) Expression and prognosis analyses of Runt-related transcription factor family in human leukemia. Mol Ther Oncolytics 12:103–111

    Article  CAS  PubMed  Google Scholar 

  • Taipaleenmäki H, Browne G, Akech J, Zustin J, Van Wijnen AJ, Stein JL et al (2015) Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res 75(7):1433–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenti MT, Serafini P, Innamorati G, Gili A, Cheri S, Bassi C et al (2016) Runx2 expression: a mesenchymal stem marker for cancer. Oncol Lett 12(5):4167–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Deen M, Akech J, Wang T, FitzGerald TJ, Altieri DC, Languino LR et al (2010) The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells. J Cell Biochem 109(4):828–837

    PubMed  PubMed Central  Google Scholar 

  • van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA et al (2012) Genomic promoter occupancy of runt-related transcription factor RUNX2 in Osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem 287(7):4503–4517

    Article  PubMed  Google Scholar 

  • Villanueva F, Araya H, Briceno P, Varela N, Stevenson A, Jerez S et al (2019) The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol 234(8):13659–13679

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH (2004) Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr Cartil 12(12):963–973

    Article  Google Scholar 

  • Wang Q, Yu W, Huang T, Zhu Y, Huang C (2016) RUNX2 promotes hepatocellular carcinoma cell migration and invasion by upregulating MMP9 expression. Oncol Rep 36(5):2777–2784

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Deng L, Huang J, Cai R, Zhu X, Liu F et al (2017) High expression of Fibronectin 1 suppresses apoptosis through the NF-kappaB pathway and is associated with migration in nasopharyngeal carcinoma. Am J Transl Res 9(10):4502–4511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Qin G, Liang X, Wang W, Wang Z, Liao D et al (2020) Targeting the CK1α/CBX4 axis for metastasis in osteosarcoma. Nat Commun 11(1):1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y (2020) Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 19(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysokinski D, Blasiak J, Pawlowska E (2015) Role of RUNX2 in breast carcinogenesis. Int J Mol Sci 16(9):20969–20993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Liu K, Chen J, Gong Y, Zhou X, Huang J (2021) RUNX2 as a potential prognosis biomarker and new target for human lung cancer. Explor Res Hypothesis Med 6:99–109

    Google Scholar 

  • Xie Y, Sun W, Deng Z, Zhu X, Hu C, Cai L (2017) MiR-302b suppresses Osteosarcoma cell migration and invasion by targeting Runx2. Sci Rep 7(1):13388

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu Z, Zhou L, Xie H, Cheng J, Ling Q et al (2015) Characterization of genome-wide TFCP2 targets in hepatocellular carcinoma: implication of targets FN1 and TJP1 in metastasis. J Exp Clin Cancer Res 34:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue P, Li B, An Y, Sun J, He X, Hou R et al (2016) Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation. Cell Death Differ 23(11):1862–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Han D, Chen Z, Han C, Dong W, Han L et al (2020) RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int 20(1):505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K et al (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18(8):952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED et al (2011) FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res 71(9):3257–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Zhang S, Wang L, Huang S, Yuan Y, Yang J et al (2020) BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis 9(3):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Lasfar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pulica, R., Cohen-Solal, K., Lasfar, A. (2022). Evaluating the Role of RUNX2 in Cancer and Its Potential as a Therapeutic Target. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_254-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_254-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics