Skip to main content

Molecular Perspective on Solutions and Liquid Mixtures from Modelling and Experiment

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Abstract

Liquid solutions and mixtures are part of our everyday lives and also important for their chemical and industrial applications. While considered fairly unattractive substances when kept in bottles and containers, their behavior as molecules can be completely the opposite, continuously attracting scientists to explain it better. Very strong repulsive and attractive interactions between the molecules can create most intriguing local structures, aggregates and complexes, whose spatial organization is often difficult to rationalize. Also, the same mixture can behave completely differently depending on the composition ratio, affecting strongly its macroscopic properties. To gain insight into the complex world of binary liquid mixtures, deep eutectic solvents and ionic liquid systems, combined theoretical and experimental studies are necessary. In this chapter we introduce the methodology of computer simulations and illustrate with several examples of the often-unexpected behavior of many liquid mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBGKY:

Bogolyubov-Born-Green-Kirkwood-Yvon

CG:

Coarse-grained

FF :

Force field

GAFF :

Amber General Force Field

ILs:

Ionic liquids

LqE :

Low-q excess

KFV :

Key feature vectors

MC:

Monte Carlo

MD :

Molecular Dynamics

MM :

Molecular Mechanics

NMR :

Nuclear Magnetic Resonance

NPT:

Isothermal–isobaric ensemble

PGM :

Platinum group metal

RDF :

Radial distribution function

SAXS :

X-ray scattering

SDF :

Spatial distribution functions

THF :

Tetrahydrofuran

VP :

Voronoi polyhedron

H E :

Excess molar enthalpies

R G :

Radius of gyration

R H :

Hydrodynamic radius

V E :

Excess molar volumes

BMB :

bis(mandelato)-borate

BOB :

bis(oxalato)-borate

DBE :

di-n-butyl ether

DME :

1,2-Dimethoxyethane

DMSO :

Dimethyl sulfoxide

EAN:

Ethylammonium nitrate

NMP :

N-methyl-2-pyrrolidone

P6,6,6,14:

trihexyl(tetradecyl)phosphonium

References

  1. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, Oxford

    Google Scholar 

  2. Frenkel D, Smit B (1997) Understanding molecular simulations: from algorithms to applications. Academic Press, Cambridge

    Book  MATH  Google Scholar 

  3. Lyubartsev AP, Laaksonen A, Vorontsov-Velyaminov PN (1994) Free energy calculations for lennard-jones systems and water using the expanded ensemble method a monte carlo and molecular dynamics simulation study. Mol Phys 82:455–471. https://doi.org/10.1080/00268979400100344

    Article  ADS  Google Scholar 

  4. Luhmer M, Van Belle D, Reisse J, Odelius M, Kowalewski J, Laaksonen A (1993) Magnetic relaxation of xenon-131 dissolved in benzene. A study by molecular dynamics and Monte Carlo simulations. J Chem Phys 98:1566–1578. https://doi.org/10.1063/1.464273

    Article  ADS  Google Scholar 

  5. Laaksonen A, Kowalewski J, Jönsson B (1982) Intermolecular nuclear spin-spin coupling and scalar Relaxation, a quantum-mechanical and statistical-mechanical study for the aqueous fluoride ion. Chem Phys Lett 89:412–417

    Article  ADS  Google Scholar 

  6. Hamani AWS, Bazile JP, Hoang H, Luc HT, Daridon JL, Galliero G (2020) Thermophysical properties of simple molecular liquid mixtures: on the limitations of some force fields. J Mol Liq 303:112663. https://doi.org/10.1016/j.molliq.2020.112663

    Article  Google Scholar 

  7. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Harlow

    Google Scholar 

  8. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) {CHARMM}: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    Article  Google Scholar 

  9. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  10. Weiner PW, Kollman PA (1981) AMBER: assisted model building with energy refinement. J Comput Chem 2:287–303

    Article  Google Scholar 

  11. Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    Article  Google Scholar 

  12. Jorgensen W, Swenson C (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578

    Article  Google Scholar 

  13. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  Google Scholar 

  14. Dauber-Osguthorpe P, Hagler AT (2019) Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there? J Comput Aided Mol Des 33:133–203

    Article  ADS  Google Scholar 

  15. Gkeka P, Stoltz G, Farimani AB, Belkacemi Z, Ceriotti M, Chodera J, Dinner AR, Ferguson A, Maillet J-B, Minoux H, Peter C, Pietrucci F, Silveira A, Tkatchenko A, Trstanova Z, Wiewiora R, Leliévre T (2020) Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems. J Chem Theory Comput 16:4757–4775

    Article  Google Scholar 

  16. Usula M, Mocci F, Cesare Marincola F, Porcedda S, Gontrani L, Caminiti R (2014) The structural organization of N -methyl-2-pyrrolidone + water mixtures: a densitometry, X-ray diffraction, and molecular dynamics study. J Chem Phys 140:124503

    Google Scholar 

  17. Humprey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  18. Laaksonen L (1992) A graphics program for the analysis and display of molecular dynamics trajectories. J Mol Graph 10:33–34

    Article  Google Scholar 

  19. Barker JA, Henderson D (1972) Theories of liquids. Annu Rev Phys Chem 23:439–484

    Article  ADS  Google Scholar 

  20. Kusalik PG, Svishchev IM (1994) The spatial structure in liquid water. Science 265:1219–1221

    Article  ADS  Google Scholar 

  21. Svishchev IM, Kusalik PG (1993) Structure in liquid water: a study of spatial distribution functions. J Chem Phys 99:3049–3058

    Article  ADS  Google Scholar 

  22. Bergman DL, Laaksonen L, Laaksonen A (1997) Visualization of solvation structures in liquid mixtures. J Mol Graph Model 15(301–6):328–333

    Google Scholar 

  23. Kovacs H, Laaksonen A (1991) Molecular dynamics simulation and NMR study of water-acetonitrile mixtures. J Am Chem Soc 113:5596–5605 

    Google Scholar 

  24. Vishnyakov A, Lyubartsev AP, Laaksonen A (2001) Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide - water mixture. J Phys Chem A 105:1702–1710

    Article  Google Scholar 

  25. Dahlberg M, Laaksonen A (2006) Preferential solvation of phenol in binary solvent mixtures. A molecular dynamics study. J Phys Chem A 110:2253–2258. https://doi.org/10.1021/jp056463e

    Article  Google Scholar 

  26. Laaksonen A, Lyubartsev A, Mocci F (2012) M.DynaMix studies of solvation, solubility and permeability. In: Wang PL (ed) Molecular dynamics - studies of synthetic and biological macromolecules. IntechOpen, pp 85–103

    Google Scholar 

  27. Engelbrecht L, Mocci F, Laaksonen A, Koch KR (2018) 195Pt NMR and molecular dynamics simulation study of the solvation of [PtCl6]2- in water-methanol and water-dimethoxyethane binary mixtures. Inorg Chem 57:12025–12037. https://doi.org/10.1021/acs.inorgchem.8b01554

    Article  Google Scholar 

  28. Bergman D, Laaksonen A (1998) Topological and spatial structure in the liquid-water–acetonitrile mixture. Phys Rev E 58:4706–4715

    Article  ADS  Google Scholar 

  29. de Villiers Engelbrecht L, Farris R, Vasiliu T, Demurtas M, Piras A, Cesare Marincola F, Laaksonen A, Porcedda S, Mocci F (2021) Theoretical and experimental study of the excess thermo-dynamic properties of highly non-ideal liquid mixtures of butanol isomers + DBE. J Phys Chem B 125:587-600

    Google Scholar 

  30. Stillinger FH (1980) Water revised. Science 209:451–457

    Article  ADS  Google Scholar 

  31. Luzar A, Chandler D (1996) Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett 76:928–931

    Article  ADS  Google Scholar 

  32. Kumar R, Schmidt JR, Skinner JL (2007) Hydrogen bonding definitions and dynamics in liquid water. J Chem Phys 126:4107

    ADS  Google Scholar 

  33. Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD (2020) Microstructural and dynamical heterogeneities in ionic liquids. Chem Rev 120:5798–5877

    Article  Google Scholar 

  34. Brehm M, Weber H, Thomas M, Hollõczki O, Kirchner B (2015) Domain analysis in nanostructured liquids: a post-molecular dynamics study at the example of ionic liquids. ChemPhysChem 16:3271–3277

    Article  Google Scholar 

  35. Gellatly BJ, Finney JL (1982) Calculation of protein volumes: An alternative to the Voronoi procedure. J Mol Biol 161:305–322

    Article  Google Scholar 

  36. Ruocco G, Sampoli M, Vallauri R (1991) Molecular dynamics simulations of liquid water: Voronoi polyhedra and network topology. J Mol Struct 250:259–270

    Article  ADS  Google Scholar 

  37. Shih JP, Sheu SY, Mou CY (1994) A Voronoi polyhedra analysis of structures of liquid water. J Chem Phys 100:2202–2212

    Article  ADS  Google Scholar 

  38. Rapaport DC (1983) Density fluctuations and hydrogen bonding in supercooled water. Mol Phys 48:23–31

    Article  ADS  Google Scholar 

  39. Pei HW, Laaksonen A (2019) Feature vector clustering molecular pairs in computer simulations. J Comput Chem 40:2539–2549

    Article  Google Scholar 

  40. Mocci F, Laaksonen A, Wang Y, Saba G, Lai A, Cesare Marincola F (2014) CompChem and NMR probing ionic liquids. In: Caminiti R, Gontrani L (eds) The structure of ionic liquids, soft and biological matter series. Springer International Publishing, Switzerland, pp 97–126

    Google Scholar 

  41. Mocci F, Laaksonen A (2015) Combining MD simulations and NMR spectroscopy for molecular insight and methodological synergy: the integrated MD-NMR method. In: Nuclear magnetic resonance Volume 44, Kamieńska-Trela K (Ed), The Royal Society of Chemistry, Cambridge, pp 592–616

    Chapter  Google Scholar 

  42. Usula M, Porcedda S, Mocci F, Gontrani L, Caminiti R, Marincola FC, Caminiti R, Cesare Marincola F (2014) NMR, calorimetry, and computational studies of aqueous solutions of N-Methyl-2-pyrrolidone. J Phys Chem B 118:10493–10502

    Article  Google Scholar 

  43. Gontrani L, Caminiti R (2012) The structure of liquid N-methyl pyrrolidone probed by x-ray scattering and molecular simulations. J Chem Phys 136:074505

    Article  ADS  Google Scholar 

  44. Rezanova EN, Kammerer K, Lichtenthaler RN (1999) Excess properties of binary alkanol + diisopropyl ether (DIPE) or + dibutyl ether (DBE) mixtures and the application of the extended real associated solution model. J Chem Eng Data 44:1235–1239

    Article  Google Scholar 

  45. Alaoui F, Montero E, Bazile JP, Comuñas MJP, Galliero G, Boned C (2011) Liquid density of 1-butanol at pressures up to 140MPa and from 293.15K to 403.15K. Fluid Phase Equilib 301:131–136

    Article  Google Scholar 

  46. Patil KR, Pathak G, Pradhan SD (1989) Excess volumes of isomeric butanols with di-n-butyl ether. Proc Indian Acad Sci - Chem Sci 101:443–447

    Google Scholar 

  47. Kammerer K, Lichtenthaler RN (1998) Excess properties of binary alkanol-ether mixtures and the application of the ERAS model. Thermochim Acta 310:61–67

    Article  Google Scholar 

  48. Bernazzani L, Carosi MR, Duce C, Gianni P, Mollica V (2006) Volumetric properties of binary mixtures of isomeric butanols and C8 solvents at 298.15 K. J Solution Chem 35:1567–1585

    Article  Google Scholar 

  49. Valén A, López MC, Urieta JS, Royo FM, Lafuente C (2002) Thermodynamic study of mixtures containing oxygenated compounds. J Mol Liq 95:157–165

    Article  Google Scholar 

  50. Giner B, Artigas H, Carrión A, Lafuente C, Royo FM (2003) Excess thermodynamic properties of isomeric butanols with 2-methyl-tetrahydrofuran. J Mol Liq 108(1–3):303–311

    Article  Google Scholar 

  51. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  ADS  Google Scholar 

  52. Bernardis FL, Grant RA, Sherrington DC (2005) A review of methods of separation of the platinum-group metals through their chloro-complexes. React Funct Polym 65:205–217

    Article  Google Scholar 

  53. Pesek JJ, Mason WR (1977) Platinum-195 magnetic resonance spectra of some platinum(II) and platinum(IV) complexes. J Magn Reson 25:519–529

    ADS  Google Scholar 

  54. Freeman W, Pregosin PS, Sze SN, Venanzi LM (1976) Platinum-195 NMR using Fourier transform techniques. The PtCl42- ion. J Magn Reson 22:473–478

    ADS  Google Scholar 

  55. Frankel LS, Stengle TR, Langford CH (1965) A study of preferential solvation utilizing nuclear magnetic resonance. Chem Commun 17:393–394

    Google Scholar 

  56. Frankel LS, Langford CH, Stengle TR (1970) Nuclear magnetic resonance techniques for the study of preferential solvation and the thermodynamics of preferential solvation. J Phys Chem 74:1376–1381

    Article  Google Scholar 

  57. Atkin R, Warr GG (2008) The smallest amphiphiles: nanostructure in protic room-temperature ionic liquids with short alkyl groups. J Phys Chem B 112:4164–4166

    Article  Google Scholar 

  58. Mariani A, Caminiti R, Campetella M, Gontrani L (2016) Pressure-induced mesoscopic disorder in protic ionic liquids: first computational study. Phys Chem Chem Phys 18:2297–2302

    Article  Google Scholar 

  59. Russina O, Sferrazza A, Caminiti R, Triolo A (2014) Amphiphile meets amphiphile: beyond the polar-apolar dualism in ionic liquid/alcohol mixtures. J Phys Chem Lett 5:1738–1742

    Article  Google Scholar 

  60. Jiang HJ, Fitzgerald PA, Dolan A, Atkin R, Warr GG (2014) Amphiphilic self-assembly of alkanols in protic ionic liquids. J Phys Chem B 118:9983–9990

    Article  Google Scholar 

  61. Mariani A, Caminiti R, Ramondo F, Salvitti G, Mocci F, Gontrani L (2017) Inhomogeneity in ethylammonium nitrate-acetonitrile binary mixtures: the highest “low q excess” reported to date. J Phys Chem Lett 8:3512–3522

    Article  Google Scholar 

  62. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  63. Mirzoev A, Lyubartsev AP (2013) MagiC: software package for multiscale modeling. J Chem Theory Comput 9:1512–1520

    Article  Google Scholar 

  64. Wang YL, Lyubartsev A, Lu ZY, Laaksonen A (2013) Multiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials. Phys Chem Chem Phys 15:7701–7712

    Article  Google Scholar 

  65. Smirnov PR, Trostin VN (2007) Structures of the nearest surroundings of the K+, Rb +, and Cs+ ions in aqueous solutions of their salts. Russ J Gen Chem 77:2101–2107

    Article  Google Scholar 

  66. Mocci F, Saba G (2003) Molecular dynamics simulations of A. T-rich oligomers: sequence-specific binding of NA+ in the minor groove of B-DNA. Biopolymers 68:471–485. https://doi.org/10.1002/bip.10334

    Article  Google Scholar 

  67. Mocci F, Laaksonen A, Lyubartsev A, Saba G, Chimiche S, Cagliari U, Universitaria C (2004) Molecular dynamics investigation of 23 Na NMR relaxation in oligomeric DNA aqueous solution. J Phys Chem B 108:16295–16302

    Article  Google Scholar 

  68. Lyubartsev AP, Laaksonen A (1998) Molecular dynamics simulations of dna in solution with different counter-ions. J Biomol Struct Dyn 16:579–592

    Article  Google Scholar 

  69. Perepelytsya S (2018) Hydration of counterions interacting with DNA double helix: a molecular dynamics study. J Mol Model 24:171

    Google Scholar 

  70. Perepelytsya SM (2020) Positively and negatively hydrated counterions in molecular dynamics simulations of DNA double helix. Ukr J Phys 65:510

    Article  Google Scholar 

  71. Sarman S, Wang YL, Rohlmann P, Glavatskih S, Laaksonen A (2018) Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Phys Chem Chem Phys 20:10193–10203. https://doi.org/10.1039/c7cp08349a

    Article  Google Scholar 

  72. Wang Y, Sarman S, Glavatskih S, Antzutkin ON, Rutland MW, Laaksonen A (2015) Atomistic insight into Tetraalkylphosphonium-Bis(oxalato)borate 2 Ionic Liquid/Water Mixtures. I. Local Microscopic Structure.  J Phys Chem B 119:5251-5264

    Google Scholar 

  73. Diogo JCF, Caetano FJP, Fareleira JMNA, Wakeham WA (2014) Viscosity measurements on ionic liquids: a cautionary tale. Int J Thermophys 35:1615–1635

    Article  ADS  Google Scholar 

  74. Neves CMSS, Carvalho PJ, Freire MG, Coutinho JAP (2011) Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. J Chem Thermodyn 43:948–957. https://doi.org/10.1016/j.jct.2011.01.016

    Article  Google Scholar 

  75. Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, MacFarlane DR (2007) Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem Commun 3817–3819.

    Google Scholar 

  76. Vaughan JW, Dreisinger D, Haggins J (2006) Density, viscosity, and conductivity of tetraalkyl phosphonium ionic liquids. ECS Trans 2:381

    Article  Google Scholar 

  77. McAtee ZP, Heitz MP (2016) Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system. J Chem Thermodyn 93:34–44. https://doi.org/10.1016/j.jct.2015.09.030

    Article  Google Scholar 

  78. Ma C, Laaksonen A, Ji X, Lu X (2018) The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 47:8685–8720

    Article  Google Scholar 

  79. Shah FU, Glavatskih S, MacFarlane DR, Somers A, Forsyth M, Antzutkin ON (2011) Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys Chem Chem Phys 13:12865–12873. https://doi.org/10.1039/c1cp21139k

    Article  Google Scholar 

  80. Wang Y-L, Sarman S, Golets M, Mocci F, Lu Z-Y, Laaksonen A (2019) 4. Multigranular modeling of ionic liquids. In: Fehrmann R, Santini C (eds) Ionic liquids. Walter De Gruyter GmbH, Berlin, pp 55–100

    Google Scholar 

Download references

Acknowledgements

S. Perepelytsya acknowledges the support from the National Academy of Sciences of Ukraine (project 0117U000240) F. Mocci thanks the Regione Sardegna for support, grant number RASSR 81788 and MIUR, Project PRIN2017 “CANDL2” (Grant 2017W75RAE). A. Laaksonen also thanks the Swedish Research Council for support (Project No. 2019-03865) and for a partial support by a grant from the Ministry of Research and Innovation of Romania (CNCS-UEFISCDI, Project No. PN-III-P4- P4-ID-PCCF-2016-0050, within PNCDI III. Many simulations described were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC, HPC2N and NSC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca Mocci or Aatto Laaksonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engelbrecht, .d., Mocci, F., Wang, Y., Perepelytsya, S., Vasiliu, T., Laaksonen, A. (2022). Molecular Perspective on Solutions and Liquid Mixtures from Modelling and Experiment. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_3

Download citation

Publish with us

Policies and ethics