Skip to main content

Role of Cardiomyocyte Apoptosis in Heart Failure

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Abstract

Cardiomyocyte apoptosis has now been identified in a wide variety of patients with heart failure as well as in failing hearts due to experimentally induced pathophysiological situations such as myocardial infarction, hemodynamic alterations, and different types of cardiomyopathies. Several mechanisms including oxidative stress, inflammation and intracellular Ca2+-overload have been suggested to induce the release of cytotoxic proteins such as cytochrome C for the activation of caspases -3/-9 and subsequent occurrence of apoptotic cell death. Extensive research has revealed both the up-regulation of pro-apoptotic pathway involving PKC isoforms -α/-ε, NFκB, p38-MAPK and BAX, and down-regulation of anti-apoptotic pathway involving Akt, BAD, Bcl-2 and Erk-1/2 in cardiomyocytes from failing hearts. In view of the critical role of inflammation in heart failure, some evidence has been presented to show the role of TNF-α in the activation and deactivation of cell survival and cell death signal transduction pathways for the occurrence of apoptosis in non-ischemic failing hearts due to volume overload and dilated cardiomyopathy. Although the occurrence of apoptosis in failing hearts can be seen to produce loss of some cardiomyocytes leading to heart dysfunction, no meaningful conclusion can be made regarding the exact role of apoptosis in contractile defects during the development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Eng J Med 335:1182–1189

    Article  CAS  Google Scholar 

  2. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  CAS  PubMed  Google Scholar 

  3. Anversa PL, Kajstura J, Guerra S, Beltrami CA (1998) Myocyte death and growth in the failing heart. Lab Invest 78:767–786

    CAS  PubMed  Google Scholar 

  4. Narula J, Pandey P, Arbustini E et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96:8144–8149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Condorelli G, Morisco C, Stassi G et al (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes Bax and Bcl-2 during left ventricular adaptation to chronic pressure overload in the rat. Circulation 99:3071–3078

    Article  CAS  PubMed  Google Scholar 

  6. Saraste A, Pulkki K, Kallajoki M et al (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29:380–386

    Article  CAS  PubMed  Google Scholar 

  7. Frustaci A, Chimenti C, Setoguchi M et al (1999) Cell death in acromegalic cardiomyopathy. Circulation 99:1426–1434

    Article  CAS  PubMed  Google Scholar 

  8. Heling A, Zimmermann R, Kostin S et al (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86:846–853

    Article  CAS  PubMed  Google Scholar 

  9. Hojo Y, Saito T, Kondo H (2012) Role of apoptosis in left ventricular remodeling after acute myocardial infarction. J Cardiol 60:91–92

    Article  PubMed  Google Scholar 

  10. Arbustini E, Brega A, Narula J (2008) Ultrastructural definition of apoptosis in heart failure. Heart Fail Rev 13:121–135

    Article  PubMed  Google Scholar 

  11. Dorn GW II (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81:465–473

    Article  CAS  PubMed  Google Scholar 

  12. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  PubMed  Google Scholar 

  13. Philipp S, Pagel I, Hohnel K et al (2004) Regulation of caspase 3 and Fas in pressure overload-induced left ventricular dysfunction. Eur J Heart Fail 6:845–851

    Article  CAS  PubMed  Google Scholar 

  14. Regula KM, Kirshenbaum LA (2005) Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 38:3–13

    Article  CAS  PubMed  Google Scholar 

  15. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in apoptotic signaling in heart failure due to volume overload. Apoptosis 15:499–510

    Article  PubMed  Google Scholar 

  16. Dent MR, Das S, Dhalla NS (2007) Alterations in both death and survival signals for apoptosis in heart failure due to volume overload. J Mol Cell Cardiol 43:726–732

    Article  CAS  PubMed  Google Scholar 

  17. Das S, Babick AP, Xu YJ et al (2010) TNF-alpha-mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. J Cell Mol Med 14:1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanoh M, Takemura G, Misao J et al (1999) Significance of myocytes with positive DNA end-labeling (TUNEL) in hearts with dilated cardiomyopathy. Circulation 99:2757–2764

    Article  CAS  PubMed  Google Scholar 

  19. Schaper J, Elsasser A, Kostin S (1999) The role of cell death in heart failure. Circ Res 85:867–869

    Article  CAS  PubMed  Google Scholar 

  20. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113

    Article  CAS  PubMed  Google Scholar 

  21. Elsasser A, Suzuki K, Schaper J (2000) Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. J Mol Cell Cardiol 32:711–724

    Article  CAS  PubMed  Google Scholar 

  22. Knaapen MW, Davies MJ, De Bie M et al (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312

    Article  CAS  PubMed  Google Scholar 

  23. Takemura G, Fujiwara H (2006) Morphological aspects of apoptosis in heart diseases. J Cell Mol Med 10:56–75

    Article  CAS  PubMed  Google Scholar 

  24. Sanchis D, Llovera M, Ballester M, Comella JX (2008) An alternative view of apoptosis in heart development and disease. Cardiovasc Res 77:448–451

    Article  CAS  PubMed  Google Scholar 

  25. Cristobal C, Segovia J, Alonso-Pulpon LA et al (2010) Apoptosis and acute cellular rejection in human heart transplants. Rev Esp Cardiol 63:1061–1069

    PubMed  Google Scholar 

  26. Vahasilta T, Malmberg M, Saraste A et al (2011) Cardiomyocyte apoptosis after antegrade and retrograde cardioplegia during aortic valve surgery. J Thorac Cardiovasc Surg 92:1351–1357

    Google Scholar 

  27. Khoynezhad A, Jalali Z, Tortolani AJ (2007) A synopsis of research in cardiac apoptosis and its application to congestive heart failure. Tex Heart Inst J 34:352–359

    PubMed  PubMed Central  Google Scholar 

  28. Gelpi RJ, Park M, Gao S et al (2011) Apoptosis in severe, compensated pressure overload predominates in nonmyocytes and is related to the hypertrophy but not function. Am J Physiol Heart Circ Physiol 300: H1062–H1068

    Google Scholar 

  29. Kolpakov MA, Seqqat R, Rafiq K et al (2009) Pleiotropic effects of neutrophils on myocyte apoptosis and left ventricular remodeling during early volume overload. J Mol Cell Cardiol 47:634–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiorillo C, Nediani C, Ponziani V et al (2005) Cardiac volume overload rapidly induces oxidative stress-mediated myocyte apoptosis and hypertrophy. Biochim Biophys Acta 1741:173–182

    Article  CAS  PubMed  Google Scholar 

  31. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological action and prevented cell death. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  33. Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu 17:229–259

    PubMed  Google Scholar 

  34. Arends MJ, Wyllie AH (1991) Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32:223–254

    Article  CAS  PubMed  Google Scholar 

  35. Alter P, Jobmann M, Meyer E et al (2001) Apoptosis in myocarditis and dilated cardiomyopathy: does enterovirus genome persistence protect from apoptosis? An endomyocardial biopsy study. Cardiovasc Pathol 10:229–234

    Article  CAS  PubMed  Google Scholar 

  36. Krijnen PAJ, Nijmeijer R, Meijer CJL et al (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hughes SE (2003) Detection of apoptosis using in situ markers for DNA strand breaks in the failing human heart. Fact or epiphenomenon? J Pathol 201:181–186

    Google Scholar 

  38. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  39. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7:1–24

    Article  CAS  Google Scholar 

  40. Takemura G, Kanamori H, Okada H et al (2018) Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 23:759–772

    Article  PubMed  Google Scholar 

  41. Shekhar A, Heeger P, Reutelingsperger C et al (2018) Targeted imaging for cell death in cardiovascular disorders. JACC Cardiovasc Imaging 11:476–493

    Article  PubMed  Google Scholar 

  42. Jiang X, Guo CX, Zeng XJ et al (2015) A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway. Apoptosis 20:1033–1047

    Article  CAS  PubMed  Google Scholar 

  43. Gogiraju R, Xu X, Bochenek ML et al (2015) Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc 4:1–21

    Article  CAS  Google Scholar 

  44. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation 135:146–603

    Article  Google Scholar 

  45. Foex P (2017) Innovations in management of cardiac disease: drugs, treatment strategies and technology. Br J Anaesth 119:23–33

    Article  Google Scholar 

  46. Taylor CJ, Ryan R, Nichols L et al (2017) Survival following a diagnosis of heart failure in primary care. Fam Pract 34:161–168

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bennett MR (2002) Apoptosis in the cardiovascular system. Heart 87:480–487

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nishida K, Otsu K (2008) Cell death in heart failure. Circ J 72:17–21

    Article  Google Scholar 

  49. Haudek SB, Taffet GE, Schneider MD et al (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haunstetter A, Izumo S (1998) Apoptosis basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1128

    Article  CAS  PubMed  Google Scholar 

  51. Torre-Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    Article  CAS  PubMed  Google Scholar 

  52. Baldi A, Abbate A, Bussani R et al (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34:165–174

    Article  CAS  PubMed  Google Scholar 

  53. Chang W, Kajstura J, Nitahara JA et al (1996) Programmed cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327

    Article  Google Scholar 

  54. Moorjani N, Westaby S, Narula J et al (2009) Effects of left ventricular volume overload on mitochondrial and death-receptor-mediated apoptotic pathways in the transition to heart failure. Am J Cardiol 103:1261–1268

    Article  CAS  PubMed  Google Scholar 

  55. Cesselli D, Jakoniuk I, Barlucchi L et al (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286

    Article  CAS  PubMed  Google Scholar 

  56. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  CAS  PubMed  Google Scholar 

  57. Black SC, Huang JQ, Rezaiefar P et al (1998) Co-Localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in rats. J Mol Cell Cardiol 30:733–742

    Article  CAS  PubMed  Google Scholar 

  58. Kirshenbaum LA, Meissac D (1997) The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 96:1580–1585

    Article  CAS  PubMed  Google Scholar 

  59. Feuerstein GZ (1999) Apoptosis in cardiac diseases-new opportunities for novel therapeutics for heart diseases. Cardiovasc Drugs Ther 13:289–294

    Article  CAS  PubMed  Google Scholar 

  60. Carlson DL, Willis MS, White J et al (2005) Tumor necrosis factor-α-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit Care Med 33:1021–1028

    Article  CAS  PubMed  Google Scholar 

  61. Zell R, Geck P, Werdan K, Boekstegers P (1997) TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177:61–67

    Article  CAS  PubMed  Google Scholar 

  62. Comstock KL, Krown KA, Page MT et al (1998) LPS-induced TNF-alpha release from and apoptosis in rat cardiomyocytes: obligatory role for CD14 in mediating the LPS response. J Mol Cell Cardiol 30:2761–2775

    Article  CAS  PubMed  Google Scholar 

  63. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  64. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  65. Murphy E, Imahashi K, Steenbergen C (2005) Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med 15:283–290

    Article  CAS  PubMed  Google Scholar 

  66. Das S, Tosaki A, Bagchi D et al (2005) Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and—independent pathways. J Pharmacol Exp Ther 314:762–769

    Article  CAS  PubMed  Google Scholar 

  67. Das S, Cordis GA, Maulik N, Das DK (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 288:H328–H335

    Article  CAS  PubMed  Google Scholar 

  68. Krown KA, Page MT, Nguyen C et al (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865

    Google Scholar 

  69. Engel D, Peshock R, Armstong RC et al (2004) Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol 287:H1303–H1311

    Article  CAS  PubMed  Google Scholar 

  70. Orogo AM, Gustafsson AB (2013) Cell death in the myocardium: my heart won’t go on. IUBMB Life 65:651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mughal W, Dhingra R, Kirshenbaum LA (2012) Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 14:540–547

    Article  CAS  PubMed  Google Scholar 

  72. Hofstra L, Liem IH, Dumont EA et al (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356:209–212

    Article  CAS  PubMed  Google Scholar 

  73. Kostin S, Pool L, Elsasser A et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724

    Article  CAS  PubMed  Google Scholar 

  74. Glumac S, Pejic S, Kostadinovic S et al (2016) Apoptosis in endomyocardial biopsies from patients with dilated cardiomyopathy. Folia Biol (Praha) 62:207–211

    CAS  Google Scholar 

  75. Chen C, Zou LX, Lin QY et al (2019) Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol 20:390–401

    Article  CAS  PubMed  Google Scholar 

  76. Liu JJ, Peng L, Bradley CJ et al (2000) Increased apoptosis in the heart of genetic hypertension, associated with increased fibroblasts. Cardiovasc Res 45:729–735

    Article  CAS  PubMed  Google Scholar 

  77. Nishigaki K, Minatoguchi S, Seishima M et al (1997) Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 29:1214–1220

    Article  CAS  PubMed  Google Scholar 

  78. Chao W, Shen Y, Li L et al (2002) Importance of FADD signaling in serum-deprivation- and hypoxia-induced cardiomyocyte apoptosis. J Biol Chem 277:31639–31645

    Article  CAS  PubMed  Google Scholar 

  79. Grazette LP, Rosenzweig A (2005) Role of apoptosis in heart failure. Heart Fail Clin 1:251–261

    Article  PubMed  Google Scholar 

  80. Zhang X, Szeto C, Gao E et al (2013) Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ Res 112:498–509

    Article  CAS  PubMed  Google Scholar 

  81. Chen YW, Pat B, Gladden JD et al (2011) Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 300:H2251–H2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Treskatsch S, Shakibaei M, Feldheiser A et al (2015) Ultrastructural changes associated with myocardial apoptosis, in failing rat hearts induced by volume overload. Int J Cardiol 197:327–332

    Google Scholar 

  83. Mohamed BA, Elkenani M, Jakubiczka-Smorag J et al (2019) Genetic deletion of calcium/calmodulin-dependent protein kinase type II delta does not mitigate adverse myocardial remodeling in volume-overloaded hearts. Sci Rep 9:9889

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mohamed BA, Schnelle M, Khadjeh S et al (2016) Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 18:362–371

    Article  CAS  PubMed  Google Scholar 

  85. Reddy S, Zhao M, Hu DQ et al (2013) Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Physiol 304:H1314–H1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aboryag NB, Mohamed DM, Dehe L et al (2017) Histopathological changes in the kidney following congestive heart failure by volume overload in rats. Oxid Med Cell Longev 1–10:2017

    Google Scholar 

  87. Shaqura M, Mohamed DM, Aboryag NB et al (2017) Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats. PLoS One 12:e0184161

    Google Scholar 

  88. Wencker D, Chandra M, Nguyen K et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harvey PA, Leinwand LA (2011) The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gu G, Na Y, Chung H et al (2017) Zebrafish larvae model of dilated cardiomyopathy induced by terfenadine. Korean Circ J 47:960–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. The Lancet 390:400–414

    Article  CAS  Google Scholar 

  92. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of thecardiomyopathies. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  93. Hantson P (2019) Mechanisms of toxic cardiomyopathy. Clin Toxicol (Phila) 57:1–9

    Google Scholar 

  94. Sakamoto A, Ono K, Abe M et al (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94:13873–13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mitsuhashi S, Saito N, Watano K et al (2003) Defect of delta-sarcoglycan gene is responsible for development of dilated cardiomyopathy of a novel hamster strain, J2N-k: calcineurin/PP2B activity in the heart of J2N-k hamster. J Biochem 134:269–276

    Article  CAS  PubMed  Google Scholar 

  96. Takagi C, Urasawa K, Yoshida I et al (1999) Enhanced GRK5 expression in the hearts of cardiomyopathic hamsters, J2N-k. Biochem Biophys Res Commun 262:206–210

    Article  CAS  PubMed  Google Scholar 

  97. Zorc M, Vraspir-Porenta O, Zorc-Pleskovic R et al (2003) Apoptosis of myocytes and proliferation markers as prognostic factors in end-stage dilated cardiomyopathy. Cardiovasc Pathol 12:36–39

    Article  PubMed  Google Scholar 

  98. Jain M, Jakubowski A, Cui L et al (2009) A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation 119:2058–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu B, Li J, Ni H et al (2018) TLR4 Activation promotes the progression of experimental autoimmune myocarditis to dilated cardiomyopathy by inducing mitochondrial dynamic imbalance. Oxid Med Cell Longev 3181278

    Google Scholar 

  100. Chen SN, Lombardi R, Karmouch J et al (2019) DNA damage response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ Res 124:856–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Das DK (2003) Protein kinase C isozymes signaling in the heart. J Mol Cell Cardiol 35:887–889

    Article  CAS  PubMed  Google Scholar 

  102. Wang J, Liu X, Arneja AS et al (1999) Alterations in protein kinase A and protein kinase C levels in heart failure due to genetic cardiomyopathy. Can J Cardiol 15:683–690

    CAS  PubMed  Google Scholar 

  103. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314

    Article  CAS  PubMed  Google Scholar 

  104. Badrichani AZ, Stroka DM, Bilbao G et al (1999) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 103:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434

    Article  CAS  PubMed  Google Scholar 

  106. Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91:776–781

    Article  CAS  PubMed  Google Scholar 

  107. Yang E, Zha J, Jockel J et al (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  CAS  PubMed  Google Scholar 

  108. Scheid MP, Duronio V (1998) Dissociation of cytokine-induced phosphorylation of BAD and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci USA 95:7439–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  PubMed  Google Scholar 

  110. Nicolson WD, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 257:299–306

    Article  Google Scholar 

  111. Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15:515–522

    Article  CAS  PubMed  Google Scholar 

  112. Saini HK, Xu Y-J, Zhang M et al (2005) Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 10:213–222

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang M, Xu Y-J, Saini HK et al (2005) TNF alpha as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload. Biochem Biophys Res Commun 327:57–63

    Article  CAS  PubMed  Google Scholar 

  114. Sack M (2002) Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol Ther 94:123–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The infrastructure support for this project was provided by the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhullar, S.K., Shah, A.K., Dhalla, N.S. (2022). Role of Cardiomyocyte Apoptosis in Heart Failure. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_14

Download citation

Publish with us

Policies and ethics