Skip to main content

Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities

  • Chapter
  • First Online:
Polyvinylchloride-based Blends

Abstract

PVC is a versatile polymer used in a diversity of applications, function of its own, as well as its blending component’s properties. Since the early 1930s, when commercial production of PVC started, it became a universal polymer due to its high performance and low cost, combined with the broad range of items that can be obtained by multiple processing techniques and variable parameters. For enhanced performances, PVC can be mixed with (bio)plasticizers, thermoplastics, rubbers, polysaccharides, minerals, natural fillers or other types of additives in order to improve PVC blends compatibility. PVC is found in various applications, such as building, packaging, automotive, military and aeronautic industries, medicine, ships construction, life rafts, garden hoses, swimming rings, footballs, toys, different cards and so on. PVC is also used in the preparation of membranes (e.g., for water treatment), owing to its good mechanical strength, abrasion resistance, chemical stabilization, thermal properties, low cost and corrosion resistance. Different factors affect the properties of PVC composites, such as processing techniques and parameters, the origin of the filler, its particle size and its aspect ratio, as well as its concentration and the homogeneity of its distribution in the polymer matrix. PVC bionanocomposites can be also produced by using nanoelements resulted from different renewable resources, e.g., cellulose, starch, chitin, inducing also PVC’s biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morawetz H (1982) History of polymer science and technology. Marcel Dekker, New York

    Google Scholar 

  2. Yarahmadi N, Jakubowicz I, Martinsson L (2003) PVC floorings as post consumer products for mechanical recycling and energy recovery. Polym Degrad Stab 79:439–448

    Article  CAS  Google Scholar 

  3. Borroso EG, Duarte FM, Couto M, Maia JM (2008) A Rheological study of aging of emulsion and microsuspension based PVC plastisols. J Appl Polym Sci 109:664–673

    Article  CAS  Google Scholar 

  4. Rasteiro MG, Tomás A, Ferreira L, Figuredo S (2009) PVC paste rheology: study of process dependencies. J Appl Polym Sci 112:2809–2821

    Article  CAS  Google Scholar 

  5. Unar IN, Soomro SA, Aziz S (2010) Effect of various additives on the physical properties of polyvinylchloride resin. Pak J Anal Environ Chem 11:44–50

    CAS  Google Scholar 

  6. Elgozali A, Hassan M (2008) Effect of additives on the mechanical properties of polyvinylchloride. J Sci Technol 9:1–12

    Google Scholar 

  7. Bahgat AA, Sayyah SM, Shalabi HS (1998) Electrical properties of pure PVC, in science and technology of polymers and advanced materials (Prasad PN, Kandil SH, Kafafi ZH (eds)). Springer, Boston, New York, pp 421–428

    Google Scholar 

  8. Mohan KR, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Testing 30:881–886

    Article  CAS  Google Scholar 

  9. Hasan BA, Saeed MA, Hasan AA (2012) Optical properties of poly vinyl chloride PVC films irradiated with beta and gamma–rays. Brit J Sci 7:14–28

    Google Scholar 

  10. Aleshin AN, Mironkov NB, Suvorov AV, Conklin JA, Su TM, Kaner RB (1996) Transport properties of ion-implanted and chemically doped polyaniline films. Phys Rev B 54:11638–11643

    Article  CAS  Google Scholar 

  11. Ogura K, Saino T, Nakayama M, Shiigi H (1997) The humidity dependence of the electrical conductivity of a soluble polyaniline–poly(vinyl alcohol) composite film. J Mater Chem 7:2363–2366

    Article  CAS  Google Scholar 

  12. Devi CU, Sharma AK, Rao VVRN (2002) Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater Lett 56:167–174

    Article  CAS  Google Scholar 

  13. Agarwal S, Sexena NS, Agrawal R, Saraswat VK (2013) study of mechanical properties of polyvinyl chloride (PVC) and polystyrene (PS) polymers and their blends. AIP Conf Proc 1536:777–778

    Article  Google Scholar 

  14. Gouinlock EV (1975) The fusion of highly crystalline poly(vinyl chloride). J Polym Sci Part B Polym Phys 13:1533–1542

    Article  CAS  Google Scholar 

  15. Hakkarainen M (2003) New PVC materials for medical applications the release profile of PVC/polycaprolactone-polycarbonate aged in aqueous environments. Polym Degrad Stab 80:451–458

    Article  CAS  Google Scholar 

  16. Feldman D (2014) Poly(vinyl chloride) nanocomposites. J Macromol Sci Part A Pure Appl Chem 51(8):659–667

    Article  CAS  Google Scholar 

  17. Madaleno L, Thomsen JS, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70:804–814

    Google Scholar 

  18. Chipara M, Cruz J, Vega ER, Alarcon J, Mion T, Chipara DM, Ibrahim E, Tidrow SC, Hui D (2012) Polyvinylchloride-single-walled carbon nanotube composites: thermal and spectroscopic properties. J Nanomaterials 2012:435412

    Google Scholar 

  19. Mondragón M, Valdes SS, Espíndola MES, López JER (2011) Morphology, mechanical properties, and thermal stability of rigid PVC/clay nanocomposites. Polym Eng Sci 51:641–646

    Article  CAS  Google Scholar 

  20. Awad WH, Beyer G, Benderly D, Ijdo WL, Songtipya P, Gasco MMJ, Manias E, Wilkie CA (2009) Material properties of nanoclay PVC composites. Polymer 50:1857–1867

    Article  CAS  Google Scholar 

  21. Gao J, Du Y, Xing L (2011) Rheological behavior and mechanical properties of PVC/V-POSS nanocomposites. Adv Mater Res 217–218:555–558

    Article  Google Scholar 

  22. Mathur V, Sharma K (2014) Small angle x-ray scattering analysis of PS/CdS, PVC/CdS & PMMA/CdS polymeric nanocomposites. e-J Surf Sci Nanotechnol 12:420–422

    Google Scholar 

  23. Wan CY, Qiao XY, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22:453–461

    Article  CAS  Google Scholar 

  24. Chazeau L, Cavaille JY, Terech P (1999) Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study. Polymer 40:5333–5344

    Article  CAS  Google Scholar 

  25. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55

    Article  CAS  PubMed  Google Scholar 

  26. Thabet A, Mobarak YA, Bakry M (2011) A review of nano-fillers effects on industrial polymers and their characteristics. J Eng Sci 39(2):377–403

    Google Scholar 

  27. Ede AN, Ogundiran A (2014) Thermal behaviour and admissible compressive strength of expanded polystyrene wall panels of varying thickness. Curr Trends Technol Sci CTTS 3(2):110–117

    Google Scholar 

  28. Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS (2015) Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J 72:256–269

    Article  CAS  Google Scholar 

  29. Abdelrazek EM, Elashmawi IS (2008) Characterization and physical properties of CoCl2 filled polyethyl-methacrylate films. Polym Compos 29:1036–1043

    Article  CAS  Google Scholar 

  30. Zhang Z, Zhang J, Zhu WQ (2018) Low-cost poly(vinyl chloride)/poly(-methylstyrene-acrylonitrile)/chlorinated polyethylene/mineral fillers composites with highly improved thermal conductivity I: mechanical and thermal performance. Polym Compos 39:553–559. https://doi.org/10.1002/pc.23968

    Article  CAS  Google Scholar 

  31. Bishay IK, Abd-El-Messieh SL, Mansour SH (2011) Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Mater Des 32:62–68. https://doi.org/10.1016/j.matdes.2010.06.035

    Article  CAS  Google Scholar 

  32. Jazi SHS, Bagheri R, Esfahany MN (2015) The effect of surface modification of (micro/nano)-calcium carbonate particles at various ratios on mechanical properties of poly(vinyl chloride) composites. J Thermoplast Compos Mater 28:479–495. https://doi.org/10.1177/0892705713486128

    Article  CAS  Google Scholar 

  33. Arayapranee W, Prasassarakich P, Rempel GL (2004) Blends of poly(vinyl chloride) (PVC)/natural rubber-g(styrene-co-methyl methacrylate) for improved impact resistance of PVC. J Appl Polym Sci 93:1666–1672. https://doi.org/10.1002/app.20591

    Article  CAS  Google Scholar 

  34. Ratnam CT, Zaman K (1999) Modification of PVC/ENR blends by electron beam irradiation. Angew Makromol Chem 269:42–48

    Article  CAS  Google Scholar 

  35. Ward AA, Khalaf AI, Ismail MN, Tawfik SY, Mansour SH (2013) Graphite and copper nanoparticles in PVC/NBR composites. Kgk-Kautschuk Gummi Kunststoffe 66:36–45

    CAS  Google Scholar 

  36. Yuan QA, Bateman SA, Wu DY (2010) Mechanical and conductive properties of carbon black-filled high-density polyethylene, low-density polyethylene, and linear low-density polyethylene. J Thermoplast Compos Mater 23:459–471. https://doi.org/10.1177/0892705709349318

    Article  CAS  Google Scholar 

  37. Abu-Abdeen M, Elamer I (2010) Mechanical and swelling properties of thermoplastic elastomer blends. Mater Des 31:808–815. https://doi.org/10.1016/j.matdes.2009.07.059

    Article  CAS  Google Scholar 

  38. Hajar MDS, Supri AG, Hanif MPM, Yazid MIM. Iop. Effect of graphite loading on the electrical and mechanical properties of poly(ethylene oxide)/poly(vinyl chloride) polymer films. In: Proceedings of international conference on applications and design in mechanical engineering (ICADME), Malaysia, 21–22 Aug

    Google Scholar 

  39. Guermazi N, Haddar N, Elleuch K, Ayedi HF (2016) Effect of filler addition and weathering conditions on the performance of PVC/CaCO3 composites. Polym Compos 37:2171–2183. https://doi.org/10.1002/pc.23396

    Article  CAS  Google Scholar 

  40. Esmizadeh E, Naderi G, Ghoreishy MHR, Bakhshandeh GR (2011) Optimal parameter design by Taguchi method for mechanical properties of NBR/PVC nanocomposites. Iran Polym J 20:587–596

    CAS  Google Scholar 

  41. Pinto G, Jimenez-Martin A (2001) Conducting aluminum-filled nylon 6 composites. Polym Compos 22:65–70. https://doi.org/10.1002/pc.10517

    Article  CAS  Google Scholar 

  42. Li Y, Li Y, Hashimoto M (2019) Low-voltage planar PVC gel actuator with high performances. Sens Actuators B-Chem 282:482–489. https://doi.org/10.1016/j.snb.2018.11.101

    Article  CAS  Google Scholar 

  43. El-Kosasy AM, Hamdy M, Rahman A, Abdelaal SH (2019) Graphene nanoplatelets in potentiometry: a nanocomposite carbon paste and PVC based membrane sensors for analysis of Vilazodone HC1 in plasma and milk samples. Talanta 193:9–14. https://doi.org/10.1016/j.talanta.2018.09.091

    Article  CAS  PubMed  Google Scholar 

  44. Apostu M, Bibire N, Tantaru G, Vieriu M, Panainte AD, Agoroaei L (2015) Ion-selective membrane electrodes for the determination of heavy metals construction characterization and applications. Rev Chim 66:657–659

    CAS  Google Scholar 

  45. Fang L-F, Zhou M-Y, Cheng L, Zhu B-K, Matsuyama H, Zhao S (2019) Positively charged nanofiltration membrane based on cross-linked polyvinyl chloride copolymer. J Membr Sci 572:28–37. https://doi.org/10.1016/j.memsci.2018.10.054

    Article  CAS  Google Scholar 

  46. Zhou M-Y, Fang L-F, Sun C-C, Lin C-E, Zhu B-K, Chen J-H (2019) Pore size tailoring from ultrafiltration to nanofiltration with PVC-g-PDMA via rapid immersion thermal annealing. J Membr Sci 572:401–409. https://doi.org/10.1016/j.memsci.2018.10.060

    Article  CAS  Google Scholar 

  47. Zhang X, Cai Y, Teng X, Nan B, Xu S (2019) Application of polybenzimidazole as a panchromatic ultraviolet absorber in poly(vinyl chloride) film. Constr Build Mater 194:171–178. https://doi.org/10.1016/j.conbuildmat.2018.10.152

    Article  CAS  Google Scholar 

  48. Teotia M, Verma A, Akitsu T, Tanaka S, Haraguchi T, Soni RK (2019) Salen type copper(II) complexes as flame retardants for PVC sheets. J Sci Ind Res 78:46–49

    Google Scholar 

  49. Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST (2019) Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol 121:707–717. https://doi.org/10.1016/j.ijbiomac.2018.10.085

    Article  CAS  PubMed  Google Scholar 

  50. Gaballah ST, Khalil AM, Rabie ST (2019) Thiazole derivatives-functionalized polyvinyl chloride nanocomposites with photostability and antimicrobial properties. J Vinyl Add Technol 25:E137–E146. https://doi.org/10.1002/vnl.21670

    Article  CAS  Google Scholar 

  51. Aghazadeh M, Yavari K (2018) Galvanostatic Deposition of magnetite nanoparticles for biomedical applications: simple preparation and surface modification with polyethylenimine and polyvinyl chloride. Anal Bioanal Electrochem 10:1426–1436

    CAS  Google Scholar 

  52. Totu EE, Isildak I, Tavukcuoglu O, Agir I, Yildirim R, Nigde M, Nechifor AC, Cristache CM (2018) Coated copper wire calcium selective microelectrode for applications in dental medicine. Rev Chim 69:4113–4117

    Google Scholar 

  53. Nanu C, Poeata I, Popescu C, Eva L, Toma BF, Toma SL (2018) The influence of the characteristics of plastic materials used in the performance of the Thoraco-Lumbar Orthoses. Materiale Plastice 55:85–90

    Article  Google Scholar 

  54. Nacu S (2011) Experimental study on the pyrotechnic composition signalling red and green using DTA. Rev Chim 62:240–244

    CAS  Google Scholar 

  55. Ouart DC, Conkling JA, Johnson JW. Composition, useful in a pyrotechnic flare including signal or distress flares, comprises strontium nitrate, potassium nitrate, sulfur, PVC, paraffin oil, and a sawdust mixture. US8182622-B1

    Google Scholar 

  56. Niu H-M, Li K-S (2017) Study of in-situ compatibilized polyvinyl chloride/polystyrene blends catalyzed by anhydrous aluminum chloride. DEStech Trans Mater Sci Eng. https://doi.org/10.12783/dtmse/amsee2017/14260

    Article  Google Scholar 

  57. Asadinezhad A, Novak I, Lehocky M, Bilek F, Vesel A, Junkar I, Saha P, Popelka A (2010) Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion. Molecules 15:1007–1027. https://doi.org/10.3390/molecules15021007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu CW, Fang ZP, Zhong JH (1993) Study on compatibilization-cross-linking synergism in PVC/LDPE blends. Angew Makromol Chem 212:45–52. https://doi.org/10.1002/apmc.1993.052120105

    Article  CAS  Google Scholar 

  59. Klapiszewski L, Pawlak F, Tomaszewska J, Jesionowski T (2015) Preparation and characterization of novel PVC/Silica-Lignin composites. Polymers 7:1767–1788. https://doi.org/10.3390/polym7091482

    Article  CAS  Google Scholar 

  60. Eastwood EA, Dadmun MD (2002) Compatibilization of poly(vinyl chloride) and polyolefin elastorner blends with multiblock/blocky chlorinated polyethylenes. Polymer 43:6707–6717. https://doi.org/10.1016/s0032-3861(02)00639-0

    Article  CAS  Google Scholar 

  61. Hill SS, Shaw BR, Wu AHB (2001) The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinylchloride tubing during respiratory and non-respiratory exposure. Clin Chim Acta 304:1–8

    Article  CAS  PubMed  Google Scholar 

  62. Ciacci L, Passarini F, Vassura I (2017) The European PVC cycle: in-use stock and flows. Resour Conserv Recycl 123:108–116

    Article  Google Scholar 

  63. Pradeep S, Benjamin S (2012) Mycelial fungi completely remediate di(2-ethylhexyl)phthalate, the hazardous plasticizer in PVC blood storage bag. J Hazard Mater 235–236:69–77

    Article  PubMed  CAS  Google Scholar 

  64. Brostow W, Lu X, Osmanson AT (2018) Nontoxic bio-plasticizers for PVC as replacements for conventional toxic plasticizers. Polym Test 69:63–70

    Article  CAS  Google Scholar 

  65. Pyeon HB, Park JE, Suh DH (2017) Non-phthalate plasticizer from camphor for flexible PVC with a wide range of available temperature. Polym Test 63:375–381

    Article  CAS  Google Scholar 

  66. Liu T, Jiang P, Liu H, Li M, Dong Y, Wang R, Wang Y (2017) Performance testing of a green plasticizer based on lactic acid for PVC. Polym Test 61:205–213

    Article  CAS  Google Scholar 

  67. Yin B, Aminlashgari N, Yang X, Hakkarainen M (2014) Glucose esters as biobased PVC plasticizers. Eur Polym J 58:34–40

    Article  CAS  Google Scholar 

  68. Feng G, Hu L, Ma Y, Jia P, Hu Y, Zhang M, Liu C, Zhou Y (2018) An efficient bio-based plasticizer for poly(vinyl chloride) from waste cooking oil and citric acid: synthesis and evaluation in PVC films. J Cleaner Prod 189:334–343

    Article  CAS  Google Scholar 

  69. Suzuki AH, Botelho BG, Oliveira LS, Franca AS (2018) Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. Eur Polym J 99:142–149

    Article  CAS  Google Scholar 

  70. Yang Y, Huang J, Zhang R, Zhu J (2017) Designing bio-based plasticizers—effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Mater Des 126:29–36. https://doi.org/10.1016/j.matdes.2017.04.005

    Article  CAS  Google Scholar 

  71. Chen J, Li X, Wang Y, Huang J, Li K, Nie X (2017) Synthesis and application of environmental soybean oil-based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). Eur J Lipid Sci Technol 119:1600216. https://doi.org/10.1002/ejlt.201600216

    Article  CAS  Google Scholar 

  72. Li W, Belmont B, Shih A (2015) Design and manufacture of polyvinyl chloride (PVC) tissue mimicking material for needle insertion. Procedia Manuf 1:866–878. https://doi.org/10.1016/j.promfg.2015.09.078

    Article  Google Scholar 

  73. Bigot S, Louarn G, Kébir N, Burel F (2013) Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst. Carbohydr Polym 98:1644–2164

    Article  CAS  PubMed  Google Scholar 

  74. Sobahi TR, Makki MSI, Abdelaal MY (2013) Carrier-mediated blends of Chitosan with polyvinyl chloride for different applications. J Saudi Chem Soc 17:245–250. https://doi.org/10.1016/j.jscs.2011.03.015

    Article  CAS  Google Scholar 

  75. Badr IHA, Gouda M, Abdel-sattar R, Sayour HEM (2014) Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan. Carbohydr Polym 99:783–789

    Article  CAS  PubMed  Google Scholar 

  76. Xu K, Li K, Zhong T, Xie C (2014) Interface self-reinforcing ability and antibacterial effect of natural chitosan modified polyvinyl chloride-based wood flour composites. J Appl Polym Sci 131(3):39854

    Google Scholar 

  77. Xu K, Li K, Tu D, Zhong T, Xie C (2014) Reinforcement on the mechanical-, thermal-, and water-resistance properties of the wood flour/chitosan/poly(vinyl chloride) composites by physical and chemical modification. J Appl Polym Sci 131(18):40757

    Article  CAS  Google Scholar 

  78. Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ (2016) Biodegradable polysaccharides for controlled drug delivery. ChemPlusChem 81(6):504–514

    Article  CAS  PubMed  Google Scholar 

  79. Djidjelli H, Martinez-Vega J-J, Farenc J, Benachour D (2002) Effect of wood flour content on the thermal, mechanical and dielectric properties of poly(vinyl chloride). Macromol Mater Eng 287(9):611–618

    Article  CAS  Google Scholar 

  80. Bag DS, Dubey R, Zhang N, Xie J, Varadan VK, Lal D et al (2004) Chemical functionalization of carbon nanotubes with 3-methacryloxypropyltriniethoxysilane (3-MPTS). Smart Mater Struct 13(5):1263–1267

    Article  CAS  Google Scholar 

  81. Ghasemi I, Farsheh AT, Masoomi Z (2012) Effects of multi-walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly(vinyl chloride)/(wood flour)/(multi-walled carbon nanotubes). J Vinyl Addit Technol 18(3):161–167

    Article  CAS  Google Scholar 

  82. Matuana LM, Woodhams RT, Balatinecz JJ, Park CB (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19(4):446–455

    Article  CAS  Google Scholar 

  83. Xu K, Chen T, Zheng Z, Huang S, Li K, Zhong T (2015) Effects of natural Chitosan as biopolymer coupling agent on the pyrolysis kinetics of wood flour/polyvinyl chloride composites. BioResources 10(3):4903–4912

    CAS  Google Scholar 

  84. Jiang S, Wang J, Wu J, Chen Y (2015) Poly(vinyl chloride) and poly(ether sulfone)-g-poly(ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance. J Appl Polym Sci 132:41726

    Google Scholar 

  85. Hosseini SM, Madaeni SS, Zendehnam A, Moghadassi AR, Khodabakhshi AR, Sanaeepur H (2013) Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. J Ind Eng Chem 19:854–862

    Article  CAS  Google Scholar 

  86. Behboudi A, Jafarzadeh Y, Yegani R (2016) Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem Eng Res Des 114:96–100

    Article  CAS  Google Scholar 

  87. Doubé CP, Walsh DJ (1979) Phase diagram of poly(vinyl chloride) and solution chlorinated polyethylene. Polymer 20:1115–1120

    Article  Google Scholar 

  88. Fang LF, Zhu BK, Zhu LP, Matsuyama H, Zhao S (2017) Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media. J Membr Sci 524:235–244

    Article  CAS  Google Scholar 

  89. Hachemi R, Belhaneche-bensemra N, Massardier V (2014) Elaboration and characterization of bioblends based on PVC/PLA. J Appl Polym Sci 2014:40045 1–7. https://doi.org/10.1002/app.40045

  90. Machovsky M, Kuritka I, Bazant P, Vesela D, Saha P (2014) Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites. Mater Sci Eng C 41:70–77

    Article  CAS  Google Scholar 

  91. Taurino R, Sciancalepore C, Collini L, Bondi M, Bondioli F (2018) Functionalization of PVC by chitosan addition: compound stability and tensile properties. Compos Part B 149:240–247

    Article  CAS  Google Scholar 

  92. Saheb D, Jog JP (1999) Natural fiber polymer composites: a review. Polym Adv Technol 18:351–363

    Article  CAS  Google Scholar 

  93. Dan-asabe B (2018) Thermo-mechanical characterization of banana particulate reinforced PVC composite as piping material. J King Saud Univ Eng Sci 30:296–304

    Google Scholar 

  94. Kadry G, Abd El-Hakim AEF (2015) Effect of nanocellulose on the biodegradation, morphology and mechanical properties of polyvinylchloride/nanocellulose nanocomposites. Res J Pharm Biol Chem Sci 6:659–666

    CAS  Google Scholar 

  95. Choe S, Cha Y-J, Lee H-S, Yoon JS, Choi HJ (1995) Miscibility of poly(3-hydroxybutyrate-co -3-hydroxyvalerate) and poly(vinyl chloride) blends. Polymer 36:4977–4982

    Article  CAS  Google Scholar 

  96. Eastmond GC (2000) Poly(ε-caprolactone) blends. Adv Polym Sci 149:59–223

    Article  Google Scholar 

  97. Rusu M, Ursu M, Rusu D (2006) Poly(vinyl chloride) and poly(e-caprolactone) blends for medical use. J Thermoplast Compos Mater 19:173–190

    Article  CAS  Google Scholar 

  98. Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly‐ε‐caprolactone by means on compatible polymer mixtures. J Polym Sci Part A-2 Polym Phys 7:795–807

    Google Scholar 

  99. Westhoff RP, Otey FH, Mehltretter CL, Russell CR (1974) Starch-filled polyvinyl chloride plastics-preparation and evaluation. Ind Eng Chem Prod Res Dev 13:123–125

    CAS  Google Scholar 

  100. Rosa DS, Rios AR, Viana HM, Tavares MIB (2015) Characterization of poly(vinyl chloride) compounds containing different levels of starch. J Vinyl Addit Technol 22:396–404

    Article  CAS  Google Scholar 

  101. Heiden PA (2005) Novel coupling agents for PVC/wood-flour composites. J Vinyl Addit Technol 11:160–165

    Article  CAS  Google Scholar 

  102. Feldman D, Banu D (1997) Contribution to the study of rigid PVC polyblends with different lignins. J Appl Polym Sci 66:1731–1744

    Article  CAS  Google Scholar 

  103. Ping QW, Xiao J, Zhao J (2011) The preparation and property of organic solvent lignin and PVC composite materials. Adv Mater Res 236–238:1195–1198

    Article  CAS  Google Scholar 

  104. Khan RA, Sharmin N, Khan MA, Das AK, Dey K, Saha S, Islam T, Islam R, Nigar F, Sarker B, Debnath KK, Saha M (2011) Comparative studies of mechanical and interfacial properties between jute fiber/PVC and E-Glass fiber/PVC Composites. Polym-Plast Technol Eng 50:153–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visakh, P.M., Darie-Nita, R.N. (2022). Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities. In: P. M., V., Darie-Nita, R.N. (eds) Polyvinylchloride-based Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-78455-3_1

Download citation

Publish with us

Policies and ethics