Skip to main content

Chitin and Chitosan Based PVC Composites and Nanocomposites

  • Chapter
  • First Online:
Poly(Vinyl Chloride) Based Composites and Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 170 Accesses

Abstract

Poly(vinyl chloride) is a thermoplastic material quite versatile and with wide application in society. Still, the application possibilities can be expanded through composite material with PVC as a matrix associated with biopolymers. These developments allow for improving chemical, thermal and mechanical properties and contributing to more environmentally friendly technologies. Among the biopolymers, chitin and chitosan stand out given their natural occurrence, abundance, biodegradability, biocompatibility, adsorption capacity, antimicrobial action, and easy modification. This chapter will be addressed some of the PVC-based composites containing chitosan and possible applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert, M., Patrick, S.: Poly(Vinyl Chloride). In: Brydson’s Plastics Materials, pp. 329–88. Elsevier (2017). https://doi.org/10.1016/B978-0-323-35824-8.00013-X

  2. Ranjan, N.: Chitosan with PVC polymer for biomedical applications: a bibliometric analysis. Mater Today: Proc (2021). https://doi.org/10.1016/j.matpr.2021.04.274

    Article  Google Scholar 

  3. Everard, M.: Twenty years of the polyvinyl chloride sustainability challenges. J. Vinyl Add. Tech. 26, 390–402 (2020). https://doi.org/10.1002/vnl.21754

    Article  CAS  Google Scholar 

  4. Pan, Y., Yuan, Y., Wang, D., Yang, R.: An overview of the flame retardants for poly(vinyl chloride): recent states and perspective. Chin. J. Chem. 38, 1870–1896 (2020). https://doi.org/10.1002/cjoc.202000375

    Article  CAS  Google Scholar 

  5. Hajibeygi, M., Maleki, M., Shabanian, M., Ducos, F., Vahabi, H.: New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl. Surf. Sci. 439, 1163–1179 (2018). https://doi.org/10.1016/j.apsusc.2018.01.255

    Article  CAS  Google Scholar 

  6. Abdel-Monem, R.A., Rabie, S.T., El-Liethy, M.A., Hemdan, B.A., El-Nazer, H.A., Gaballah, S.T.: Chitosan- PVC conjugates/metal nanoparticles for biomedical applications. Polym. Adv. Technol. 33, 514–523 (2022). https://doi.org/10.1002/pat.5533

    Article  CAS  Google Scholar 

  7. Taurino, R., Sciancalepore, C., Collini, L., Bondi, M., Bondioli, F.: Functionalization of PVC by chitosan addition: compound stability and tensile properties. Compos. B Eng. 149, 240–247 (2018). https://doi.org/10.1016/j.compositesb.2018.05.021

    Article  CAS  Google Scholar 

  8. Song, Q., Wu, H., Liu, H., Wang, T., Meng, W., Qu, H.: Chitosan-regulated inorganic oxyacid salt flame retardants: preparation and application in PVC composites. J. Therm. Anal. Calorim. 146, 1629–1639 (2021). https://doi.org/10.1007/s10973-020-10170-7

    Article  CAS  Google Scholar 

  9. Mohy Eldin, M.S., Tamer, T.M., Abu Saied, M.A., Soliman, E.A., Madi, N.K., Ragab, I., et al.: Click grafting of Chitosan onto PVC surfaces for biomedical applications. Adv. Polym. Technol. 37, 38–49 (2018). https://doi.org/10.1002/adv.21640

    Article  CAS  Google Scholar 

  10. Vatanpour, V., Yavuzturk Gul, B., Zeytuncu, B., Korkut, S., İlyasoğlu, G., Turken, T., et al.: Polysaccharides in fabrication of membranes: a review. Carbohydr. Polym. 281 (2022). https://doi.org/10.1016/j.carbpol.2021.119041

  11. Qin, Z., Zhao, L.: The history of Chito/Chitin oligosaccharides and its monomer. In: Oligosaccharides of Chitin and Chitosan, pp. 3–14. Springer Singapore, Singapore (2019). https://doi.org/10.1007/978-981-13-9402-7_1

  12. Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A.M., Baran, T., Amemiya, C.T., et al.: On chemistry of γ-chitin. Carbohyd. Polym. 176, 177–186 (2017). https://doi.org/10.1016/j.carbpol.2017.08.076

    Article  CAS  Google Scholar 

  13. Sajid, M.A., Shahzad, S.A., Hussain, F., Skene, W.G., Khan, Z.A., Yar, M.: Synthetic modifications of chitin and chitosan as multipurpose biopolymers: a review. Synth. Commun. 48, 1893–1908 (2018). https://doi.org/10.1080/00397911.2018.1465096

    Article  CAS  Google Scholar 

  14. Seghir, B. ben, Benhamza, M.H.: Preparation, optimization and characterization of chitosan polymer from shrimp shells. J. Food Measurem. Characteriz.11, 1137–1147 (2017). https://doi.org/10.1007/s11694-017-9490-9.

  15. Bessa-Junior, A.P., Gonçalves, A.A.: Análise Econômica e Produtiva da Quitosana Extraída do Exoesqueleto de Camarão. Actapesca 1, 13–28 (2013). https://doi.org/10.2312/ActaFish.2013.1.1.13-28

    Article  Google Scholar 

  16. Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., Kadak, A.E.: Physicochemical characterization of chitosan extracted from metapenaeus stebbingi shells. Food Chem. 126, 1144–1148 (2011). https://doi.org/10.1016/j.foodchem.2010.11.148

    Article  CAS  Google Scholar 

  17. Hu, X., Tian, Z., Li, X., Wang, S., Pei, H., Sun, H., et al.: Green, simple, and effective process for the comprehensive utilization of shrimp shell waste. ACS Omega 5, 19227–19235 (2020). https://doi.org/10.1021/acsomega.0c02705

    Article  CAS  Google Scholar 

  18. Kou, S. (Gabriel), Peters, L.M., Mucalo, M.R.: Chitosan: a review of sources and preparation methods. Int. J. Biol. Macromol.169, 85–94 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.005.

  19. Meramo-Hurtado, S., Alarcón-Suesca, C., González-Delgado, Á.D.: Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J. Clean. Prod. 248 (2020). https://doi.org/10.1016/j.jclepro.2019.119285

  20. Daraghmeh, N.H., Chowdhry, B.Z., Leharne, S.A., al Omari, M.M., Badwan, Chitin, A.A.: Profiles of drug substances, excipients and related methodology, vol. 36, pp. 35–102. Academic Press Inc. (2011). https://doi.org/10.1016/B978-0-12-387667-6.00002-6.

  21. Pakizeh, M., Moradi, A., Ghassemi, T.: Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polymer J. 159 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110709

  22. Rezaei Koochacksaraei, R., Dastar, B., Samadi, F., Ebrahimi, P.: Investigating of antioxidant protective effects of shrimp shells extracted chitosan in broiler chickens. Poult. Sci. J. 8, 73–81 (2020). https://doi.org/10.22069/psj.2020.17409.1530

  23. Santos, V.P., Maia, P., de Alencar, N.S., Farias, L., Andrade, R.F.S., Souza, D., et al.: Recovery of chitin and chitosan from shrimp waste with microwave technique and versatile application. Arquivos Do Instituto Biológico 86 (2019). https://doi.org/10.1590/1808-1657000982018

  24. Kameda, T., Miyazawa, M., Ono, H., Yoshida, M.: Hydrogen bonding structure and stability of α-chitin studied by 13C solid-state NMR. Macromol. Biosci. 5, 103–106 (2005). https://doi.org/10.1002/mabi.200400142

    Article  CAS  Google Scholar 

  25. Roy, J.C., Salaün, F., Giraud, S., Ferri, A., Chen, G., Guan, J.: Solubility of Chitin: solvents, solution behaviors and their related mechanisms. In: Solubility of Polysaccharides. InTech (2017). https://doi.org/10.5772/intechopen.71385

  26. Pillai, C.K.S., Paul, W., Sharma, C.P.: Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34, 641–678 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.001

    Article  CAS  Google Scholar 

  27. Joseph, B., Sam, R., Balakrishnan, P., Maria, H., Gopi, S., Volova, T., et al.: Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: recent advances. Polymers (Basel) 12, 1664 (2020). https://doi.org/10.3390/polym12081664

    Article  CAS  Google Scholar 

  28. Antony, R., Arun, T., Theodore, S., Manickam, D.: A review on applications of chitosan-based Schiff bases (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.047

    Article  Google Scholar 

  29. Dragan, E.S., Dinu, M.V.: Advances in porous chitosan-based composite hydrogels: synthesis and applications. React. Funct. Polym. 146 (2020). https://doi.org/10.1016/j.reactfunctpolym.2019.104372

  30. Ebisike, K., Okoronkwo, A.E., Alaneme, K.K.: Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method. J. King Saud Univ.– Sci. 32, 550–554 (2020). https://doi.org/10.1016/J.JKSUS.2018.08.005

    Article  Google Scholar 

  31. Boudouaia, N., Bengharez, Z., Jellali, S.: Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: application for Eriochrome black T removal from aqueous solutions. Appl. Water Sci. 9, 91 (2019). https://doi.org/10.1007/s13201-019-0967-z

    Article  CAS  Google Scholar 

  32. Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles-Monal, W., Desbrières, J., Rinaudo, M.: An infrared investigation in relation with chitin and chitosan characterization. Polymer (Guildf) 42, 3569–3580 (2001). https://doi.org/10.1016/S0032-3861(00)00713-8

    Article  CAS  Google Scholar 

  33. el Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., Lahsini, A.: Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120, 1181–1189 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.139

    Article  CAS  Google Scholar 

  34. Sebastian, J., Rouissi, T., Brar, S.K., Hegde, K., Verma, M.: Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohyd. Polym. 219, 431–440 (2019). https://doi.org/10.1016/J.CARBPOL.2019.05.047

    Article  CAS  Google Scholar 

  35. Sam, D.K., Sam, E.K., Durairaj, A., Lv, X., Zhou, Z., Liu, J.: Synthesis of biomass-based carbon aerogels in energy and sustainability. Carbohydr. Res. 491 (2020). https://doi.org/10.1016/j.carres.2020.107986

  36. Huo, Z., Wu, H., Song, Q., Zhou, Z., Wang, T., Xie, J., et al.: Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance. Carbohyd. Polym. 256, 117575 (2021). https://doi.org/10.1016/j.carbpol.2020.117575

    Article  CAS  Google Scholar 

  37. Zahra, N.M., Siswanto, Widiyanti, P.: The role of Chitosan on Polyvinyl Chloride (PVC)-glycerol biocomposites for blood bag application. J. Biomim. Biomater. Biomed. Eng. 37, 94–106 (2018). https://doi.org/10.4028/www.scientific.net/JBBBE.37.94

  38. Gaballah, S.T., El-Nazer, H.A., Abdel-Monem, R.A., El-Liethy, M.A., Hemdan, B.A., Rabie, S.T.: Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int. J. Biol. Macromol. 121, 707–717 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.085

    Article  CAS  Google Scholar 

  39. Abdel-Monem, R., Gaballah, S., El-Nazer, H., Rabie, S.: In vitro antibacterial activity of maleamates functionalized-Chitosan-PVC/Silver nanocomposites. Egypt. J. Chem. (2019). https://doi.org/10.21608/ejchem.2019.14908.1904

  40. Toh, H.W., Toong, D.W.Y., Ng, J.C.K., Ow, V., Lu, S., Tan, L.P., et al.: Polymer blends and polymer composites for cardiovascular implants. Eur. Polymer J. 146, 110249 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110249

    Article  CAS  Google Scholar 

  41. Ahmad, T., Guria, C.: Progress in the modification of polyvinyl chloride (PVC) membranes: a performance review for wastewater treatment. J. Water Process Eng. 45, 102466 (2022). https://doi.org/10.1016/j.jwpe.2021.102466

    Article  Google Scholar 

  42. Zhao, S., Malfait, W.J., Guerrero-Alburquerque, N., Koebel, M.M., Nyström, G.: Biopolymer aerogels and foams: chemistry, properties, and applications. Angew. Chem. Int. Ed. 57, 7580–7608 (2018). https://doi.org/10.1002/anie.201709014

    Article  CAS  Google Scholar 

  43. Hosseini, S.M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J.N., Taheri, M., et al.: A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. J. Hazard. Mater. 381, 120884 (2020). https://doi.org/10.1016/j.jhazmat.2019.120884

    Article  CAS  Google Scholar 

  44. Banerjee, A., Ray, S.K.: Synthesis of chitosan grafted polymethyl methacrylate nanopolymers and its effect on polyvinyl chloride membrane for acetone recovery by pervaporation. Carbohyd. Polym. 258, 117704 (2021). https://doi.org/10.1016/j.carbpol.2021.117704

    Article  CAS  Google Scholar 

  45. Mohd Halim, N.H., Adnan, R., Lahuri, A.H., Jaafar, N.F., Nordin, N.: Exploring the potential of highly efficient graphite/chitosan–PVC composite electrodes in the electrochemical degradation of Reactive Red 4. J. Chem. Technol. Biotechnol. 97, 147–159 (2022). https://doi.org/10.1002/jctb.6924

    Article  CAS  Google Scholar 

  46. Riyanto, Prawidha, A.D.: Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) material and its application to electrochemical degradation of methylene blue in sodium chloride solution. In: IOP Conference Series: Materials Science and Engineering, vol. 288, p. 012127 (2018). https://doi.org/10.1088/1757-899X/288/1/012127

  47. Ge, S., Zuo, S., Zhang, M., Luo, Y., Yang, R., Wu, Y., et al.: Utilization of decayed wood for polyvinyl chloride/wood flour composites. J. Market. Res. 12, 862–869 (2021). https://doi.org/10.1016/j.jmrt.2021.03.026

    Article  CAS  Google Scholar 

  48. Ge, S., Gu, H.-P., Ma, J., Yang, H.-Q., Jiang, S., Liu, Z., et al.: Potential use of different kinds of carbon in production of decayed wood plastic composite. Arab. J. Chem. 11, 838–843 (2018). https://doi.org/10.1016/j.arabjc.2017.12.026

    Article  CAS  Google Scholar 

  49. Gómez, H.C., Serpa, A., Velásquez-Cock, J., Gañán, P., Castro, C., Vélez, L., et al.: Vegetable nanocellulose in food science: a review. Food Hydrocoll. 57, 178–186 (2016). https://doi.org/10.1016/j.foodhyd.2016.01.023

    Article  CAS  Google Scholar 

  50. Mohanty, A.K., Vivekanandhan, S., Pin, J.-M., Misra, M.: Composites from renewable and sustainable resources: challenges and innovations. Science 2018(362), 536–542 (1979). https://doi.org/10.1126/science.aat9072

    Article  CAS  Google Scholar 

  51. Giannetti, B.F., Agostinho, F., Eras, J.J.C., Yang, Z., Almeida, C.M.V.B.: Cleaner production for achieving the sustainable development goals. J. Clean. Prod. 271, 122127 (2020). https://doi.org/10.1016/j.jclepro.2020.122127

    Article  Google Scholar 

  52. THE 17 GOALS | Sustainable Development (n.d.) https://sdgs.un.org/goals. Accessed 19 April 2022

Download references

Acknowledgements

The authors thank the Federal University of ABC (UFABC) and the Coordination for the Improvement of Higher Education Personnel (CAPES). The authors also are grateful for the technical support of the Multiuser Experimental Center of UFABC (CEM – UFABC), CECS (UFABC), and Waste Revaluation Center from UFABC (Revalores – UFABC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derval dos Santos Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Silva, M.B., dos Santos Rosa, D. (2024). Chitin and Chitosan Based PVC Composites and Nanocomposites. In: H, A., Sabu, T. (eds) Poly(Vinyl Chloride) Based Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45375-5_5

Download citation

Publish with us

Policies and ethics