Skip to main content

Data-Driven Business Models for Life Cycle Technologies: Exemplary Planning for Hybrid Components

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2021)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 2447 Accesses

Abstract

The use of hybrid vehicle components can support the achievement of a more sustainable mobility through e.g. weight reduction and reduced environmental impacts. In order to exploit all potentials of hybrid components a holistic comprehension of the life cycle is necessary, which can be achieved by increasing the transparency through a digital representation of all life cycle stages. The digital representation contains data like process characteristics and material properties, which can be used for e.g. condition monitoring. Life Cycle Technologies (LCTs) like component- or tool-integrated sensors are an enabler to generate this data. For a value-adding use of LCTs their embedding in data-driven business models offers the potential for creating a sustainable business driven interconnection of relevant stakeholders along the life cycle. Within this paper, the definition of LCTs is enriched and a framework and procedure model for implementing LCTs is developed, including the embedding in a data-driven business model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischer, J., Nieschlag, J.: Introduction to CFRP-metal hybrids for lightweight structures. Prod. Eng. Res. Devel. 12(2), 109–111 (2018). https://doi.org/10.1007/s11740-018-0825-0

    Article  Google Scholar 

  2. Kaluza, A., Kleemann, S., Broch, F., et al.: Analyzing decision-making in automotive design towards life cycle engineering for hybrid lightweight components. Procedia CIRP 50, 825–830 (2016)

    Article  Google Scholar 

  3. Dama, K.K., Babu, V.S., Rao, R.N.: State of the art on automotive lightweight body-in-white design. Mater. Today Proc. 5(10), 20966–20971 (2018)

    Article  Google Scholar 

  4. Dér, A., Gabrisch, C., Kaluza, A., et al.: Integrating environmental impact targets in early phases of production planning for lightweight structures. Procedia CIRP 80, 169–173 (2019)

    Article  Google Scholar 

  5. Fleming, E., Ma, P.: Drug life-cycle technologies. Nat. Rev. Drug. Discov. 1(10), 751–752 (2002)

    Article  Google Scholar 

  6. Safarova, L.R., Safarov, D.T.: Design of life cycle technologies of associated products and waste in the process of preparing the production of a new automotive component. IOP Conf. Ser. Earth Environ. Sci. 459(5), 052017 (2020)

    Article  Google Scholar 

  7. Sun, X., Liu, J., Lu, B., Zhang, P., Zhao, M.: Life cycle assessment-based selection of a sustainable lightweight automotive engine hood design. Int. J. Life Cycle Assess. 22(9), 1373–1383 (2017). https://doi.org/10.1007/s11367-016-1254-y

    Article  Google Scholar 

  8. Dilger, N., Kaluza, A., Kiesewetter, A., et al.: Definition and reference framework for life cycle technologies in life cycle engineering - a case study on all solid state traction batteries. Procedia CIRP 98, 217–222 (2021)

    Article  Google Scholar 

  9. Coskun-Setirek, A., Tanrikulu, Z.: Digital innovations-driven business model regeneration: a process model. Technol. Soc. 64, 101461 (2021)

    Article  Google Scholar 

  10. Al-Debei, M., El-Haddadeh, R., Avison, D.: Towards a business model for cellular network and telecommunication operators: a theoretical framework. In: 13th Annual Conference on Proceedings of the U.K. Academy for Information Systems (UKAIS), pp. 1–15 (2008)

    Google Scholar 

  11. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Wiley, Hoboken (2010)

    Google Scholar 

  12. Ingemarsdotter, E., Jamsin, E., Balkenende, R.: Opportunities and challenges in IoT-enabled circular business model implementation – a case study. Resour. Conserv. Recycl. 162, 105047 (2020)

    Article  Google Scholar 

  13. Kohtamäki, M., Parida, V., Oghazi, P., et al.: Digital servitization business models in ecosystems: a theory of the firm. J. Bus. Res. 104, 380–392 (2019)

    Article  Google Scholar 

  14. Rymaszewska, A., Helo, P., Gunasekaran, A.: IoT powered servitization of manufacturing – an exploratory case study. Int. J. Prod. Econ. 192, 92–105 (2017)

    Article  Google Scholar 

  15. Sestino, A., Prete, M.I., Piper, L., et al.: Internet of things and big data as enablers for business digitalization strategies. Technovation 98, 102173 (2020)

    Article  Google Scholar 

  16. Ingemarsdotter, E., Jamsin, E., Kortuem, G., et al.: Circular strategies enabled by the internet of things-a framework and analysis of current practice. Sustainability 11(20), 5689 (2019)

    Article  Google Scholar 

  17. Wuest, T., Irgens, C., Thoben, K.: An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J. Intell. Manuf. 25(5), 1167–1180 (2014)

    Article  Google Scholar 

  18. Filz, M.-A., Gellrich, S., Herrmann, C., et al.: Data-driven analysis of product state propagation in manufacturing systems using visual analytics and machine learning. Procedia CIRP 93, 449–454 (2020)

    Article  Google Scholar 

  19. Rolinck, M., Gellrich, S., Bode, C., et al.: A concept for blockchain-based LCA and its application in the context of aircraft MRO. Procedia CIRP 98, 394–399 (2021)

    Article  Google Scholar 

  20. Flick, D., Gellrich, S., Filz, M.-A., et al.: Conceptual Framework for manufacturing data preprocessing of diverse input sources. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), pp. 1041–1046. IEEE (2019)

    Google Scholar 

  21. Filz, M.-A., Gellrich, S., Turetskyy, A., et al.: Virtual quality gates in manufacturing systems: framework, implementation and potential. J. Manuf. Mater. Process. 4(4), 106 (2020)

    Google Scholar 

  22. Hauschild, M., Herrmann, C., Kara, S.: An integrated framework for life cycle engineering. Procedia CIRP 61, 2–9 (2017)

    Article  Google Scholar 

  23. Biehl, S., et al.: Multifunctional thin film sensor system as monitoring system in production. Microsyst. Technol. 22(7), 1757–1765 (2016). https://doi.org/10.1007/s00542-016-2831-5

    Article  Google Scholar 

  24. Weder, A., Geller, S., Heinig, A., et al.: A novel technology for the high-volume production of intelligent composite structures with integrated piezoceramic sensors and electronic components. Sens. Actuators A 202, 106–110 (2013)

    Article  Google Scholar 

  25. Hürkamp, A., Gellrich, S., Ossowski, T., et al.: Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites. J. Manuf. Mater. Process. 4(3), 92 (2020)

    Google Scholar 

Download references

Acknowledgement

This research and development project is funded by the German Federal Ministry of Education and Research (BMBF) within the funding initiative “Research Campus – Public-Private Partnership for Innovation” (funding code: 02P18Q700) and implemented by the Project Management Agency Karlsruhe (PTKA). The author is responsible for the content of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-S. Wilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilde, AS., Gellrich, S., Mennenga, M., Abraham, T., Herrmann, C. (2022). Data-Driven Business Models for Life Cycle Technologies: Exemplary Planning for Hybrid Components. In: Behrens, BA., Brosius, A., Drossel, WG., Hintze, W., Ihlenfeldt, S., Nyhuis, P. (eds) Production at the Leading Edge of Technology. WGP 2021. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-78424-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78424-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78423-2

  • Online ISBN: 978-3-030-78424-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics