Skip to main content

Testis Toxicants: Lesson from Traditional Chinese Medicine (TCM)

  • Chapter
  • First Online:
Molecular Mechanisms in Spermatogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

The testis is one of the organs in the mammalian body that is sensitive to toxicants. Accumulating evidence has shown that human exposure to toxic ingredients in Traditional Chinese Medicine (TCM), such as triptolide, gossypol, cannabidol, piperine, α-solanine, matrine, aristolochic acid, and emodin, lead to testis injury and reproductive dysfunction. The most obvious phenotype is reduced sperm counts due to defects in spermatogenesis. Studies have also shown that Sertoli cells in the seminiferous tubule, the functional unit of the testis that supports spermatogenesis, are the cell type that is most sensitive to the disruptive effects of toxicants. Since Sertoli cells are the “mother cells” that nurture germ cell development, Sertoli cell injury thus leads to failure in germ cell development in the seminiferous epithelium. Mounting evidence has shown that the Sertoli cell cytoskeletons, mitochondria function, Leydig cells steroidogenesis pathways and sperm ion channels are some of the prime targets of toxicants from TCM. We carefully evaluate recent findings in this area of research herein, and to provide a summary of these findings, including some insightful information regarding the underlying molecular basis of toxicant-induced testis injury that impede spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carney, E. F. (2014). Antiproteinuric efficacy of A. Manihot superior to losartan. Nature Reviews Nephrology, 10, 300.

    PubMed  Google Scholar 

  2. Martel, J., Ojcius, D. M., Chang, C.-J., Lin, C.-S., Lu, C.-C., Ko, Y.-F., Tseng, S.-F., Lai, H.-C., & Young, J. D. (2016). Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13, 149.

    Article  PubMed  Google Scholar 

  3. Xiong, X. (2015). Integrating traditional Chinese medicine into Western cardiovascular medicine: An evidence-based approach. Nature Reviews Cardiology, 12, 374–374.

    Article  PubMed  Google Scholar 

  4. Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21.

    Google Scholar 

  5. Wang, X., Zhao, F., Lv, Z. M., Shi, W. Q., Zhang, L. Y., & Yan, M. (2016). Triptolide disrupts the actin-based Sertoli-germ cells Adherens junctions by inhibiting rho Gtpases expression. Toxicology and Applied Pharmacology, 310, 32–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ma, B., Qi, H., Li, J., Xu, H., Chi, B., Zhu, J., Yu, L., An, G., & Zhang, Q. (2015). Triptolide disrupts fatty acids and peroxisome proliferator-activated receptor (Ppar) levels in male mice testes followed by testicular injury: A Gc-Ms based metabolomics study. Toxicology, 336, 84–95.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, Y., Chen, G., Wang, L., Kong, J., Pan, J., Xi, Y., Shen, F., & Huang, Z. (2018). Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse Sertoli cells. Toxicology Letters, 292, 136–150.

    Article  CAS  PubMed  Google Scholar 

  8. Jing, X., Cheng, W., Guo, S., Zou, Y., Zhang, T., & He, L. (2017). Toxic effects of Tripterygium Wilfordii hook F on the reproductive system of adolescent male rats. Biomedicine & Pharmacotherapy, 95, 1338–1345.

    Article  CAS  Google Scholar 

  9. Zhou, D. R., Zhou, Y. C., Cui, G. H., Guo, X., Qin, J., Gui, Y. T., & Cai, Z. M. (2008). Gossypol repressed the gap junctional intercellular communication between Sertoli cells by decreasing the expression of Connexin43. Toxicology In Vitro, 22, 1719–1725.

    Article  CAS  PubMed  Google Scholar 

  10. Lim, W., Ham, J., Park, S., Bae, H., You, S., & Song, G. (2019). Gossypol induces disruption of spermatogenesis and steroidogenesis in male mice. Journal of Agricultural and Food Chemistry, 67, 2075–2085.

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho, R. K., Santos, M. L., Souza, M. R., Rocha, T. L., Guimaraes, F. S., Anselmo-Franci, J. A., & Mazaro-Costa, R. (2018b). Chronic exposure to Cannabidiol induces reproductive toxicity in male Swiss mice. Journal of Applied Toxicology, 38, 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  12. Carvalho, R. K., Souza, M. R., Santos, M. L., Guimaraes, F. S., Pobbe, R. L. H., Andersen, M. L., & Mazaro-Costa, R. (2018c). Chronic Cannabidiol exposure promotes functional impairment in sexual behavior and fertility of male mice. Reproductive Toxicology, 81, 34–40.

    Article  CAS  PubMed  Google Scholar 

  13. Chinta, G., Coumar, M. S., & Periyasamy, L. (2017). Reversible testicular toxicity of Piperine on male albino rats. Pharmacognosy Magazine, 13, S525–S532.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, X., Ge, F., Liu, J., Bao, S., Chen, Y., Li, D., Li, Y., Huang, T., Chen, X., Zhu, Q., Lian, Q., & Ge, R. S. (2018). Diverged effects of Piperine on testicular development: Stimulating Leydig cell development but inhibiting spermatogenesis in rats. Frontiers in Pharmacology, 9, 244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, S., Park, M. Y., Song, G., & Lim, W. (2019). Alpha-Solanine inhibits cell proliferation via mitochondrial dysfunction and inhibin synthesis in mouse testis in vitro and in vivo. Chemosphere, 235, 271–279.

    Article  CAS  PubMed  Google Scholar 

  16. Luo, T., Zou, Q. X., He, Y. Q., Wang, H. F., Wang, T., Liu, M., Chen, Y., & Wang, B. (2016). Matrine compromises mouse sperm functions by a [ca(2+)]I-related mechanism. Reproductive Toxicology, 60, 69–75.

    Article  CAS  PubMed  Google Scholar 

  17. Kwak, D. H., & Lee, S. (2016). Aristolochic acid I causes testis toxicity by inhibiting Akt and Erk1/2 phosphorylation. Chemical Research in Toxicology, 29, 117–124.

    Article  CAS  PubMed  Google Scholar 

  18. Cui, Y., Han, J., Ren, J., Chen, H., Xu, B., Song, N., Li, H., Liang, A., & Shen, G. (2019). Untargeted Lc-Ms-based Metabonomics revealed that Aristolochic acid I induces testicular toxicity by inhibiting amino acids metabolism, glucose metabolism, Beta-oxidation of fatty acids and the Tca cycle in male mice. Toxicology and Applied Pharmacology, 373, 26–38.

    Article  CAS  PubMed  Google Scholar 

  19. Oshida, K., Hirakata, M., Maeda, A., Miyoshi, T., & Miyamoto, Y. (2011). Toxicological effect of Emodin in mouse testicular gene expression profile. Journal of Applied Toxicology, 31, 790–800.

    Article  CAS  PubMed  Google Scholar 

  20. Luo, T., Li, N., He, Y. Q., Weng, S. Q., Wang, T., Zou, Q. X., & Zeng, X. H. (2015). Emodin inhibits human sperm functions by reducing sperm [ca(2+)]I and tyrosine phosphorylation. Reproductive Toxicology, 51, 14–21.

    Article  CAS  PubMed  Google Scholar 

  21. Goldbach-Mansky, R., Wilson, M., Fleischmann, R., Olsen, N., Silverfield, J., Kempf, P., Kivitz, A., Sherrer, Y., Pucino, F., Csako, G., Costello, R., Pham, T. H., Snyder, C., Van Der Heijde, D., Tao, X., Wesley, R., & Lipsky, P. E. (2009). Comparison of Tripterygium Wilfordii hook F versus sulfasalazine in the treatment of rheumatoid arthritis: A randomized trial. Annals of Internal Medicine, 151(229–40), W49–W51.

    Google Scholar 

  22. Wang, Y., Huang, L. Q., Tang, X. C., & Zhang, H. Y. (2010). Retrospect and Prospect of active principles from Chinese herbs in the treatment of dementia. Acta Pharmacologica Sinica, 31, 649–664.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Noel, P., Von Hoff, D. D., Saluja, A. K., Velagapudi, M., Borazanci, E., & Han, H. (2019). Triptolide and its derivatives as Cancer therapies. Trends in Pharmacological Sciences, 40, 327–341.

    Article  CAS  PubMed  Google Scholar 

  24. Huynh, P. N., Hikim, A. P., Wang, C., Stefonovic, K., Lue, Y. H., Leung, A., Atienza, V., Baravarian, S., Reutrakul, V., & Swerdloff, R. S. (2000). Long-term effects of Triptolide on spermatogenesis, Epididymal sperm function, and fertility in male rats. Journal of Andrology, 21, 689–699.

    CAS  PubMed  Google Scholar 

  25. Ni, B., Jiang, Z., Huang, X., Xu, F., Zhang, R., Zhang, Z., Tian, Y., Wang, T., Zhu, T., Liu, J., & Zhang, L. (2008). Male reproductive toxicity and Toxicokinetics of Triptolide in rats. Arzneimittel-Forschung, 58, 673–680.

    CAS  PubMed  Google Scholar 

  26. Grima, J., Wong, C. C., Zhu, L. J., Zong, S. D., & Cheng, C. Y. (1998). Testin secreted by Sertoli cells is associated with the cell surface, and its expression correlates with the disruption of Sertoli-germ cell junctions but not the inter-Sertoli tight junction. The Journal of Biological Chemistry, 273, 21040–21053.

    Article  CAS  PubMed  Google Scholar 

  27. Grima, J., Zhu, L., & Cheng, C. Y. (1997). Testin is tightly associated with testicular cell membrane upon its secretion by Sertoli cells whose steady-state Mrna level in the testis correlates with the turnover and integrity of inter-testicular cell junctions. The Journal of Biological Chemistry, 272, 6499–6509.

    Article  CAS  PubMed  Google Scholar 

  28. Bao, J., & Dai, S. M. (2011). A Chinese herb Tripterygium Wilfordii hook F in the treatment of rheumatoid arthritis: Mechanism, efficacy, and safety. Rheumatology International, 31, 1123–1129.

    Article  PubMed  Google Scholar 

  29. Huang, M., Zhang, H., Liu, T., Tian, D., Gu, L., & Zhou, M. (2013). Triptolide inhibits Mdm2 and induces apoptosis in acute lymphoblastic leukemia cells through a P53-independent pathway. Molecular Cancer Therapeutics, 12, 184–194.

    Article  CAS  PubMed  Google Scholar 

  30. Jiao, J., Tang, X. P., Yuan, J., Liu, X., Liu, H., Zhang, C. Y., Wang, L. Y., & Jiang, Q. (2016). Effect of external applying compound Tripterygium Wilfordii hook F. on joint pain of rheumatoid arthritis patients. Zhongguo Zhong Xi Yi Jie He Za Zhi, 36, 29–34.

    PubMed  Google Scholar 

  31. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R., & Ozcan, U. (2015). Treatment of obesity with Celastrol. Cell, 161, 999–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, J., Di, T., Wang, Y., Liu, X., Liang, D., Zhang, G., & Li, P. (2016). Multi-glycoside of Tripterygium Wilfordii hook. F. Ameliorates Imiquimod-induced skin lesions through a Stat3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses. International Journal of Molecular Medicine, 38, 747–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, Y., Zhang, W. J., & Wang, X. M. (2013). Triptolide with potential medicinal value for diseases of the central nervous system. CNS Neuroscience & Therapeutics, 19, 76–82.

    Article  CAS  Google Scholar 

  34. Gao, Y., Chen, H., Xiao, X., Lui, W. Y., Lee, W. M., Mruk, D. D., & Cheng, C. Y. (2017). Perfluorooctanesulfonate (Pfos)-induced Sertoli cell injury through a disruption of F-actin and microtubule organization is mediated by Akt1/2. Scientific Reports, 7, 1110.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, H., Gao, Y., Mruk, D. D., Xiao, X., John, C. M., Turek, P. J., Lui, W. Y., Lee, W. M., Silvestrini, B., & Cheng, C. Y. (2017). Rescue of Pfos-induced human Sertoli cell injury by overexpressing a P-Fak-Y407e Phosphomimetic mutant. Scientific Reports, 7, 15810.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Keshmiri-Neghab, H., & Goliaei, B. (2014). Therapeutic potential of gossypol: An overview. Pharmaceutical Biology, 52, 124–128.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan, C., Song, H. H., Zhang, X. Y., Jiang, Y. J., Zhang, A. T., Azzam, M. M., & Zou, X. T. (2014). Effect of expanded cottonseed meal on laying performance, egg quality, concentrations of free gossypol in tissue, serum and egg of laying hens. Animal Science Journal, 85, 549–554.

    Article  CAS  PubMed  Google Scholar 

  38. Fiorini, C., Tilloy-Ellul, A., Chevalier, S., Charuel, C., & Pointis, G. (2004). Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reproductive Toxicology, 18, 413–421.

    Article  CAS  PubMed  Google Scholar 

  39. Herve, J. C., Pluciennik, F., Bastide, B., Cronier, L., Verrecchia, F., Malassine, A., Joffre, M., & Deleze, J. (1996). Contraceptive gossypol blocks cell-to-cell communication in human and rat cells. European Journal of Pharmacology, 313, 243–255.

    Article  CAS  PubMed  Google Scholar 

  40. Wan, H. T., Mruk, D. D., Wong, C. K. C., & Cheng, C. Y. (2014). Perfluorooctanesulfonate (Pfos) perturbs male rat Sertoli cell blood-testis barrier function by affecting F-actin organization via P-Fak-Tyr407 - An In Vitro study. Endocrinology, 155, 249–262.

    Article  PubMed  Google Scholar 

  41. Li, N., Mruk, D. D., Mok, K. W., Li, M. W., Wong, C. K., Lee, W. M., Han, D., Silvestrini, B., & Cheng, C. Y. (2016). Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated Aspermatogenesis and barrier disruption. The FASEB Journal, 30, 1436–1452.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, S., Mo, J., Wang, Y., Ni, C., Li, X., Zhu, Q., & Ge, R. S. (2019). Endocrine disruptors of inhibiting testicular 3beta-Hydroxysteroid dehydrogenase. Chemico-Biological Interactions, 303, 90–97.

    Article  CAS  PubMed  Google Scholar 

  43. Lin, T., Murono, E. P., Osterman, J., Nankin, H. R., & Coulson, P. B. (1981). Gossypol inhibits testicular steroidogenesis. Fertility and Sterility, 35, 563–566.

    Article  CAS  PubMed  Google Scholar 

  44. Qian, S.-Z. (1985). Gossypol-Hypokalaemia interrelationships. International Journal of Andrology, 8, 313–324.

    Article  CAS  PubMed  Google Scholar 

  45. Waites, G. M., Wang, C., & Griffin, P. D. (1998). Gossypol: Reasons for its failure to be accepted as a safe, reversible male antifertility drug. International Journal of Andrology, 21, 8–12.

    Article  CAS  PubMed  Google Scholar 

  46. Pisanti, S., Malfitano, A. M., Ciaglia, E., Lamberti, A., Ranieri, R., Cuomo, G., Abate, M., Faggiana, G., Proto, M. C., Fiore, D., Laezza, C., & Bifulco, M. (2017). Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacology & Therapeutics, 175, 133–150.

    Article  CAS  Google Scholar 

  47. Brand, E. J., & Zhao, Z. (2017). Cannabis in Chinese medicine: Are some traditional indications referenced in ancient literature related to cannabinoids? Frontiers in Pharmacology, 8, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carvalho, R. K., Santos, M. L., Souza, M. R., Rocha, T. L., Guimaraes, F. S., Anselmo-Franci, J. A., & Mazaro-Costa, R. (2018a). Chronic exposure to Cannabidiol induces reproductive toxicity in male Swiss mice. Journal of Applied Toxicology, 38, 1545.

    Article  CAS  PubMed  Google Scholar 

  49. Srinivasan, K. (2007). Black pepper and its pungent principle-Piperine: A review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47, 735–748.

    Article  CAS  PubMed  Google Scholar 

  50. Chinta, G., Ramya Chandar Charles, M., Klopcic, I., Sollner Dolenc, M., Periyasamy, L., & Selvaraj Coumar, M. (2015). In silico and in vitro investigation of the Piperine's male contraceptive effect: Docking and molecular dynamics simulation studies in androgen-binding protein and androgen receptor. Planta Medica, 81, 804–812.

    Article  CAS  PubMed  Google Scholar 

  51. Hasanain, M., Bhattacharjee, A., Pandey, P., Ashraf, R., Singh, N., Sharma, S., Vishwakarma, A. L., Datta, D., Mitra, K., & Sarkar, J. (2015). Alpha-Solanine induces Ros-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/Mtor pathway. Cell Death & Disease, 6, E1860.

    Article  CAS  Google Scholar 

  52. Rashid, H. U., Xu, Y., Muhammad, Y., Wang, L., & Jiang, J. (2019). Research advances on anticancer activities of Matrine and its derivatives: An updated overview. European Journal of Medicinal Chemistry, 161, 205–238.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, S., Zhang, Y., Zhuang, Y., Wang, J., Ye, J., Zhang, S., Wu, J., Yu, K., & Han, Y. (2012). Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation. PLoS One, 7, E46853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yong, J., Wu, X., & Lu, C. (2015). Anticancer advances of Matrine and its derivatives. Current Pharmaceutical Design, 21, 3673–3680.

    Article  CAS  PubMed  Google Scholar 

  55. Pu, X. Y., Shen, J. Y., Deng, Z. P., & Zhang, Z. A. (2017). Plasma-specific Microrna response induced by acute exposure to Aristolochic acid I in rats. Archives of Toxicology, 91, 1473–1483.

    Article  CAS  PubMed  Google Scholar 

  56. Dong, X., Fu, J., Yin, X., Cao, S., Li, X., Lin, L., & Huyiligeqi & Ni, J. (2016). Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytotherapy Research, 30, 1207–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Srinivas, G., Babykutty, S., Sathiadevan, P. P., & Srinivas, P. (2007). Molecular mechanism of Emodin action: Transition from laxative ingredient to An antitumor agent. Medicinal Research Reviews, 27, 591–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Wenzhou Medical University (Wenzhou, Zhejiang, China) to C.Y.C.; L.W. was supported by a China Pharmaceutical University World Explorer Study Abroad Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, M., Wang, L., Cheng, C.Y. (2021). Testis Toxicants: Lesson from Traditional Chinese Medicine (TCM). In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_15

Download citation

Publish with us

Policies and ethics