Skip to main content

Chemistry, Biological Activities, and Uses of Moi Gum

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Moi gum is a well-known minor gum found abundantly in tropical and subtropical climates. Based upon its chemical and biological properties, it is modified by available techniques and put to use in different applications. Its modified derivatives are used in many applications. Here, its synthesis as a cross-linked hydrogel and its applications for dye removal is highlighted. The synthesized hydrogel (Moi-g-PAM-cl-NN’MBA) was studied for dye removal applications for brilliant green dye and its adsorption kinetics is reported. It is biodegradable in 180 days which shows its immense potential as dye removing hydrogel.

Along with it, its application as a potential matrix for drug release or nutrient release is emphasized. It was found that modified gum derivatives can be used for controlled nutrient release applications along with their release mechanism presented here. Overall, it can be concluded that based upon the chemical and biological properties of Moi gum, it can be used for many applications. It is low cost, nontoxic, easily available, easily modifiable, and it can be further explored in many applications of miscellaneous nature to suit our various requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AM:

Acrylamide

BG dye:

Brilliant green dye

FTIR:

Fourier transform infrared

GE:

Grafting efficiency

mM:

Milli molar

Mn:

Molecular weight

PAM:

Polyacrylamide

PFO:

Pseudo-first order

Ppm:

Parts per million

PSO:

Pseudo-second order

RE:

Dye removal efficiency

SAP:

Super absorbent polymers

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

References

  1. Reddy AK, Jyothi MJ, Ashok Kumara CK (2011) Lannea coromandelica the Researcher’s tree. J Pharm Res 4(3):577–579

    CAS  Google Scholar 

  2. Samanta A, Ojha D, Mukherjee B (2010) Stability analysis of primary emulsion using a new emulsifying agent gum Odina. Nat Sci 2(5):494–505

    CAS  Google Scholar 

  3. Mate CJ, Mishra S (2020) Exploring the potential of Moi Gum for diverse applications: a review. J Polym Environ 28(6):1579–1591

    Article  CAS  Google Scholar 

  4. Mate CJ, Mishra S, Srivastava PK (2020) In vitro release kinetics of graft matrices from Lannea coromandelica (Houtt) gum for treatment of colonic diseases by 5-ASA. Int J Biol Macromol 149:908–920

    Article  CAS  PubMed  Google Scholar 

  5. Nayak BS, Nayak UK, Balakrishna PK, Kumar RP (2008) Preparation and in vitro evaluation of lamivudine entrapped MOI microspheres for oral administration. Res J Pharm Technol 1:437–441

    Google Scholar 

  6. Sowdhamini VURM, Sirisha B, Pratyusha A (2015) An overview on natural polymers as pharmaceutical excipient. Intercont J Pharm Investig Res 2:35–48

    Google Scholar 

  7. Venkaiah K, Shah JJ (1984) Distribution, development and structure of gum ducts in Lannea coromandelica (Houtt.) merril. Ann Bot 54:175–186

    Article  Google Scholar 

  8. Roy PS, Samanta A, Mukherjee M, Roy B, Mukherjee A (2013) Designing novel pH-induced chitosan−gum Odina complex Coacervates for colon targeting. Ind Eng Chem Res 52:15728–15745

    Article  CAS  Google Scholar 

  9. Aditya KJ, Mousumi D, Arnab DE, Samanta A (2014) Determination of efficacy of a natural tablet binder: characterization and invitro release study. Asian J Pharm Clin Res 7(3):164–168

    Google Scholar 

  10. Perez S, Mazeau K, Herve du Penhoat C (2000) The three-dimensional structures of the pectic polysaccharides. Plant Physiol Biochem 38:37–55

    Article  CAS  Google Scholar 

  11. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol 63:10–21

    Article  CAS  PubMed  Google Scholar 

  12. Anderson DMW, Stoddart JF (1996) Studies on uronic acid materials. Carbohydr Res 2:104–114

    Article  Google Scholar 

  13. Mate CJ, Mishra S, Srivastava PK (2020) Design of low-cost Jhingan gum-based flocculant for remediation of wastewater: flocculation and biodegradation studies. Int J Environ Sci Technol 17:2545–2562

    Article  CAS  Google Scholar 

  14. Bhattacharyya AK, Rao CVN (1964) Gum Jeol: the structure of the degraded gum derived from it. Can J Chem 42:107–112

    Article  CAS  Google Scholar 

  15. Bhattacharyya AK, Mukherjee AK (1964) Structural studies of the Gum Jeol polysscahrides. Bull Chem Soc Jpn 37(10):1425–1429

    Article  CAS  Google Scholar 

  16. Nair KK, Kharb S, Thompkinson DK (2010) Inulin dietary fiber with functional and health attributes—a review. Food Rev Int 26:189–203

    Article  Google Scholar 

  17. Duppala L, Hema Naga Durga D, Ramana Murthy KV (2017) Physico-chemical and microbial studies of Lannea gum. Int Res J Pharm 8(4):50–58

    Article  CAS  Google Scholar 

  18. Yusuf M, Choudhury JU, Wahab MA, Begum J (1994) Medicinal plants of Bangladesh, Bangladesh Centre for Scientific and Industrial Research, Dhaka, Bangladesh, p 146

    Google Scholar 

  19. Yusuf M, Begum J, Hoque MN, Chowdhury JU (2009) Medicinal plants of Bangladesh, vol 318. Bangladesh Council of Scientific and Industrial Research, Dhaka, pp 217–224

    Google Scholar 

  20. Zheng XL, Xing FW (2009) Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island. China J Ethnopharm 124:197–210

    Article  Google Scholar 

  21. Subramanian SS, Nair AGR (1971) Polyphenols of Lannea coromandelica. Phyto Chem 10:1939–1940

    CAS  Google Scholar 

  22. Ghani A (2003) Medicinal plants of Bangladesh with chemical constituents and uses, 2nd edn. Asiatic Society of Bangladesh, Dhaka, p 274

    Google Scholar 

  23. Kantamreddi VSSN, Lakshmi YN, Kasapu VVVS (2010) Preliminary phytochemical analysis of some important Indian plant species. Int J Pharm Biol Sci:B358

  24. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. CSIR, New Delhi, (reprinted 1992)

    Google Scholar 

  25. Singh S, Singh GB (1996) Hypotensive activity of Lannea coromandelica bark extract. Phytother Res 10:429–430

    Article  Google Scholar 

  26. Sathish R, Mohd HA, Natarajan K, Lalitha KG (2010) Evaluation of wound healing and antimicrobial activity of Lannea coromandelica (Houtt) Merr. J Pharm Res 3(6):1225–1228

    Google Scholar 

  27. Kadir MF, Sayeed MSB, Mia MMK (2013) Ethno-pharmacological survey of medicinal plants used by traditional healers in Bangladesh for gastrointestinal disorders. J Ethnopharmacol 147:148–156

    Article  PubMed  Google Scholar 

  28. Singh S, Singh GB (1994) Anti-inflammatory activity of Lannea coromandelica bark extract in rats. Phytother Res 8:311–313

    Article  Google Scholar 

  29. Franco FM, Narasimhan D (2009) Plant names and uses as indicators of knowledge patterns. Indian J Trad Knowledge 8:645–648

    Google Scholar 

  30. Jain SK (1994) Ethnobotany and research on medicinal plants in India. Ciba Found Symp 185:153–164

    CAS  PubMed  Google Scholar 

  31. Islam MT, Tahara S (2000) Dihydroflavonols from Lannea Coromandelica. Phytochemistry 54:901–907

    Article  CAS  PubMed  Google Scholar 

  32. Kumar BK (1998) Handbook of medicinal plants pointer publishers, Jaipur (India), p 201

    Google Scholar 

  33. Thyagarajan R, Jaibala S, Balakrishnan GA (1975) Hand book of common remedies in Siddha system of medicine, Central council for research in Indian medicine and Homoeopathy, Ministry of health and family planning, Govt. of India

    Google Scholar 

  34. Saravanan S, Dhasarathan P, Indira V, Venkataraman R (2010) Screening of anti-inflammatory potential of chosen medicinal plants using swiss albino mice. Aust J Basic Appl Sci 4:6065–6068

    CAS  Google Scholar 

  35. Jain SK, Tarafder CR (1970) Medicinal plants-lore of the sandals – a revival of PO Bodding’s work. Econ Bot 24:241–278

    Article  Google Scholar 

  36. Shah GL, Yadav SS, Badri N (1983) Medicinal plants from Dahanu forest division in Maharashtra state. J Econ Taxon Bot 4:141–151

    Google Scholar 

  37. Venkata PK, Venkata R, Venkata RR (2008) Preliminary phytochemical evaluation of certain anticancer crude drugs used by Adivasis of Rayalaseema region, Andhra Pradesh, India. Ethnobot Leafl 12:693–697

    Google Scholar 

  38. Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jeronimo C, Silva BM (2010) Human cancer cell anti-proliferative and antioxidant activities of Juglans regia L (containing Quercetin-3-arabinoside). Food Chem Toxicol 48:441–447

    Article  CAS  PubMed  Google Scholar 

  39. Rastogi R, Dhawan BN (1990) Anticancer and antiviral activity in Indian medicinal plant Lannea coromandelica. Drug Dev Res 19:1–12

    Article  CAS  Google Scholar 

  40. Voit B (2000) New developments in hyper branched polymers. J Polym Sci Part A Polym Chem 38(14):2505–2525

    Article  CAS  Google Scholar 

  41. Rani GU, Konreddy AK, Mishra S, Sen G (2014) Synthesis and applications of polyacrylamide grafted agar as a matrix for controlled drug release of 5-ASA. Int J Biol Macromol 65:375–382

    Article  Google Scholar 

  42. Rahul R, Jha U, Sen G, Mishra S (1961) A novel polymeric flocculant based on polyacrylamide grafted inulin: aqueous microwave assisted synthesis. Carbohyd Polym 99:11–21

    Article  Google Scholar 

  43. Odian G, Sobel M, Rossi A, Klein R (1961) Radiation-induced graft polymerization: the trommsdorff effect of methanol. J Polym Sci 55(162):663–673

    Article  CAS  Google Scholar 

  44. Wang X, Ruther RE, Streifer JA, Hamers RJ (2010) UV-induced grafting of alkenes to silicon surfaces: photoemission versus excitons. J Am Chem Soc 132(12):4048–4049

    Article  CAS  PubMed  Google Scholar 

  45. Kim S, Kim E, Kim A, Kim W (2005) Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 292:93–98

    Article  CAS  PubMed  Google Scholar 

  46. Nayak PL, Lenka S (1980) Redox polymerization initiated by metal ions. J Macromol Sci Polym Rev 19(1):83–134

    Article  Google Scholar 

  47. Misra GS, Bajpai UD (1982) Redox polymerization (review). Prog Polym Sci 8:61–131

    Article  CAS  Google Scholar 

  48. Temel O, Ismail C (2007) Synthesis of block copolymers via redox polymerization process: a critical review. Iranian Polym J 16(8):561–581

    Google Scholar 

  49. Bhattacharya A, Rawlins JW, Ray P (eds) (2008) Polymer grafting and crosslinking. John Wiley & Sons, New York

    Google Scholar 

  50. Adams S (1983) Recent advances in radiation chemistry of carbohydrates. In: Elias PS, Cohen AJ (eds) Recent advances in food irradiation. Elsevier Biomedical Press, Amsterdam, pp 149–170

    Google Scholar 

  51. Edimecheva IP, Kisel RM, Shadyro OI, Kazem K, Murase H, Kagiya T (2005) Homolytic cleavage of the O-glycoside bond in carbohydrates: a steady-state radiolysis study. J Radiat Res 46:319–324

    Article  CAS  PubMed  Google Scholar 

  52. Grubb DT (1974) Radiation damage and electron microscopy of organic polymers. J Mater Sci 9:1715–1736

    Article  CAS  Google Scholar 

  53. Fink D (2004) Determination of radiation damage in polymers, fundamentals of Ion-irradiated polymers. Springer 63, p. 66

    Google Scholar 

  54. Pietraner MSA, Narvaiz P (2001) Examination of some protective conditions on technological properties of irradiated food grade polysaccharide. Radiat Phys Chem 60:195–201

    Article  Google Scholar 

  55. Kim BN, Lee DH, Han DH (2008) Thermal, mechanical and electrical properties on the styrene-grafted and subsequently sulfonated FEP film induced by electron beam. Polym Degrad Stab 93:1214–1221

    Article  CAS  Google Scholar 

  56. Dargaville TR, George GA, Hill DJT, Whittaker AK (2003) High energy radiation grafting of fluoropolymers. Prog Polym Sci 28:1355–1376

    Article  CAS  Google Scholar 

  57. Farquet P, Padeste C, Solak HH, Gursel SA, Scherer GG, Wokaun A (2008) Extreme UV radiation grafting of Glycidyl methacrylate nanostructures onto fluoropolymer foils by RAFT-mediated polymerization. Macromolecules 41:6309–6316

    Article  CAS  Google Scholar 

  58. Guilmeau I, Esnouf S, Betz N, Le MA (1997) Kinetics and characterization of radiation-induced grafting of styrene on fluoropolymers. Nucl Instrum Methods Phys Res, Sect B 131(1997):270–275

    Article  CAS  Google Scholar 

  59. Kimura Y, Asano MJ, Chen Y, Maekawa R, Katakai M (2008) Yoshida, influence of grafting solvents on the properties of polymer electrolyte membranes prepared by γ-ray pre-irradiation method. Radiat Phys Chem 77:864–870

    Article  CAS  Google Scholar 

  60. Ameduri B, Boutevin B (2004) Well-architectured fluoropolymers, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  61. Gubler L, Slaski M, Wallasch F, Wokaun A, Scherer GG (2009) Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film. J Membr Sci 339:68–77

    Article  CAS  Google Scholar 

  62. Lappan U, Geißler U, Uhlmann S (2005) Radiation-induced grafting of styrene into radiation-modified fluoropolymer films. Nucl Instrum Methods Phys Res, Sect B 236:413–419

    Article  CAS  Google Scholar 

  63. Chen J, Asano M, Maekawa Y, Yoshida M (2007) Polymer electrolyte hybrid membranes prepared by radiation grafting of p-styryltrimethoxysilane into poly (ethylene-co-tetrafluoroethylene) films. J Membr Sci 296:77–82

    Article  CAS  Google Scholar 

  64. Tzanetakis N, Varcoe JR, Slade RCT, Scott K (2005) Radiation-grafted PVDF anion exchange membrane for salt splitting. Desalination 174:257–265

    Article  CAS  Google Scholar 

  65. Odian G (2002) Principles of polymerization, 3rd edn. John Wiley & Sons, New York

    Google Scholar 

  66. Sinha S, Mishra S, Sen G (2013) Microwave initiated synthesis of polyacrylamide grafted casein (CAS-g-PAM)–its application as a flocculant. Int J Biol Macromol 60:141–147

    Article  CAS  PubMed  Google Scholar 

  67. Mishra S, Rani GU, Sen G (2012) Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose. Carbohyd Polym 87:2255–2262

    Article  CAS  Google Scholar 

  68. Sen G, Pal S (2009) Microwave initiated synthesis of polyacrylamide grafted carboxymethyl-starch (CMS-g-PAM): application as a novel matrix for sustained drug release. Int J Biol Macromol 45(1):48–55

    Article  CAS  PubMed  Google Scholar 

  69. Sanghi R, Bhatttacharya B, Singh V (2006) Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions. Bioresour Technol 97:1259–1264

    Article  CAS  PubMed  Google Scholar 

  70. Ruehrwein RA, Ward DW (1952) Mechanism and clay aggregation by polyelectrolytes. Soil Sci 73:485–492

    Article  CAS  Google Scholar 

  71. Kongparakul S, Prasassarakich P, Rempel LG (2008) Effect of grafted methylmethacrylate on the catalytic hydrogenation of natural rubber. Eur Polym J 44:915–1920

    Article  Google Scholar 

  72. Ragab A, Inas A, Bader D (2019) The removal of brilliant green dye from aqueous solution using Nano hydroxyapatite/chitosan composite as a sorbent. Molecules 24:847

    Article  PubMed Central  Google Scholar 

  73. Mittal H, Maity A, Ray SS (2015) Synthesis of co-polymer-grafted gum karaya and silica hybrid organic-inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem Eng J 279:166–179

    Article  CAS  Google Scholar 

  74. Mahida VP, Patel MP (2016) Removal of heavy metal ions from aqueous solution by superabsorbent poly (NIPAAm/DAPB/AA) amphoteric nanohydrogel. Desal WatTreat 57(29):13733–13746

    Article  CAS  Google Scholar 

  75. Tofighy AM, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140–147

    Article  CAS  PubMed  Google Scholar 

  76. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  77. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    Article  CAS  Google Scholar 

  78. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  79. Ahmad MA, Alrozi R (2011) Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: equilibrium, kinetic and thermodynamic studies. Chem Eng J 171(2):510–516

    Article  CAS  Google Scholar 

  80. Tempkin MJ, Pyzhev V (1940) Recent modification to Langmuir isotherms. Acta Physiochem USSR 12:217–222

    Google Scholar 

  81. Ghasemi M, Naushad M, Ghasemi N, Khosravifard Y (2014) A novel agricultural waste based adsorbent for the removal of Pb (II) from aqueous solution: kinetics, equilibrium and thermodynamic studies. J Ind Eng Chem 20:454–461

    Article  CAS  Google Scholar 

  82. Lagergren S, Svenska K (1898) About the theory of so-called adsorption of soluble substances. Kong Vetensk Acad Handl 24(2):1–39

    Google Scholar 

  83. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  CAS  PubMed  Google Scholar 

  84. Weber WJ, Morris JC (1962) Advances in water pollution research: removal of biologically resistant pollutant from wastewater by adsorption. Proceedings of the International Conference on Water Pollution Symposium, Pergamon Press Oxford, UK vol 2, pp. 231–266

    Google Scholar 

  85. Li K, Li Y, Zheng Z (2010) Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J Hazard Mater 178(1):553–559

    Article  CAS  PubMed  Google Scholar 

  86. Aharoni C, Ungarish M (1977) J Chem Soc Faraday Trans 73(3):456–464

    Article  CAS  Google Scholar 

  87. Zhang J, Stanforth R (2005) Slow adsorption reaction between aresenic species and geohite (α-FeOOH): diffusion or heteregenous surface reaction control. Langmuir 21(7):2895–2901

    Article  CAS  PubMed  Google Scholar 

  88. Namasivayam C, Kavitha D (2002) Removal of Congo red from water b adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54:47–58

    Article  CAS  Google Scholar 

  89. Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J Chem Eng Data 58:413–421

    Article  CAS  Google Scholar 

  90. Mittal H, Mishra SB, Mishra AK, Kaith BS, Jindal R (2013) Flocculation characteristics and biodegradation studies of gum ghatti based hydrogels. Int J Biol Macromol 58:37–46

    Article  CAS  PubMed  Google Scholar 

  91. Pandey VS, Verma SK, Behari K (2014) Graft [partially carboxymethylated guar gum-g-poly N-(hydroxymethyl) acrylamide] copolymer: from synthesis to applications. Carbohyd Polym 110:285–291

    Article  CAS  Google Scholar 

  92. Ni B, Liu M, Lü S (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155(3):892–898

    Article  CAS  Google Scholar 

  93. El-Mohdy HLA, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16:1–10

    Article  Google Scholar 

  94. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 2(44):322–331

    Article  Google Scholar 

  95. Rani GU, Mishra S, Sen G, Jha U (2012) Polyacrylamide grafted agar: synthesis and applications of conventional and microwave assisted technique. Carbohyd Polym 90(2):784–791

    Article  CAS  Google Scholar 

  96. Rani GU, Dey KP, Bharti S, Mishra S (2014) Controlled drug release of 5-amino salicylic acid by poly (2-hydroxyethylmethacrylate) grafted agar. Front Chem Sci Eng 8(4):465–470

    Article  CAS  Google Scholar 

  97. Prasad SS, Rao KM, Reddy PR, Reddy NS, Rao KK, Subha MCS (2012) Synthesis and characterization of guar gum-g-poly (acrylamide-glycolic acid) by redox initiator. Indian J Adv Chem Sci 1(1):28–32

    Google Scholar 

  98. Krȩglewski M, Winther F (1992) High-resolution infrared spectrum of methyl amine: assignment and analysis of the wagging state. J Mol Spectrosc 156(2):261–291

    Article  Google Scholar 

  99. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  100. Barka N, Qouzal S, Assabbane A, Nounhan A, Ichou YA (2011) Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J Saudi Chem Soc 15:263–267

    Article  CAS  Google Scholar 

  101. Ozacar M, Sengil IA (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795

    Article  PubMed  Google Scholar 

  102. Feng D, Bai B, Wang H, Suo Y (2018) Novel fabrication of PAA/PVA/yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes. J Polym Environ 26(2):567–588

    Article  CAS  Google Scholar 

  103. Rehman R, Mahmud T, Irum M (2015) Brilliant green dye elimination from water using Psidium guajava leaves and Solanum tuberosum peels as adsorbents in environmentally benign way. J Chem 126036, 8

    Google Scholar 

  104. Mate CJ, Mishra S (2020) Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol brilliant blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol 151:677–690

    Article  CAS  PubMed  Google Scholar 

  105. Ishaq M, Sultan S, Ahmad I, Saeed K (2017) Removal of brilliant green dye from aqueous medium by untreated acid treated and magnetite impregnated bentonite adsorbents. J Chem Soc Pakistan 39(5):780–787

    CAS  Google Scholar 

  106. Hameed BH, El-Khaiary MI (2008) Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. J Hazard Mater 154(1–3):237–244

    Article  CAS  PubMed  Google Scholar 

  107. Ahmad MA, Rahman NK (2011) Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chem Eng J 170(1):54–161

    Article  Google Scholar 

  108. Ozcan A, Omeroglu C, Erdogan Y, Ozcan AS (2007) Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. J Hazard Mater 140(1–2):173–179

    Article  PubMed  Google Scholar 

  109. Ahmad AF, ElChaghaby GA (2018) Palm fronds activated carbon for the removal of brilliant green dye from wastewater. Wat Desal Res J 2(1)

    Google Scholar 

  110. Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation exchange resin. Chem Eng J 152(2):339–346

    Article  CAS  Google Scholar 

  111. Pavlatou A, Polyzopolus NA (1988) The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. Eur J Soil Sci 39(3):425–436

    Article  CAS  Google Scholar 

  112. Yakout SM, Elsherif E (2010) Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon Sci Technol 1:144–153

    Google Scholar 

  113. Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J 150(2–3):403–410

    Article  CAS  Google Scholar 

  114. Mate CJ, Mishra S, Srivastava PK (2021) Design of pH sensitive low-cost adsorbent from the exudate of Lannea coromandelica (Houtt) for remediation of malachite green dye from aqueous solution. Polym Bull 78:3459–3487

    Article  CAS  Google Scholar 

  115. Karthika M, Vasuki M (2017) Removal of artificial dye solution of brilliant green over a low-cost physically activated carbon prepared from coconut Shell by adsorptive technique. Mod Chem App 5(4):2–4

    Google Scholar 

  116. Xia L (1999) Cellulase production by solid state fermentation on corn cob residue from xylose manufacture. Process Biochem 34:909–912

    Article  CAS  Google Scholar 

  117. Etienne P, Diquelou S, Prudent M, Salon C, Maillard A, Ourry A (2018) Macro and micronutrient storage in plants and their remobilization when facing scarcity: the case of drought. Agriculture 8:14

    Article  Google Scholar 

  118. Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49

    Article  CAS  Google Scholar 

  119. Goldbach HE, Wimmer MA, Findeklee P (2000) Discussion paper: boron – how can the critical level be defined. J Plant Nutr Soil Sci 163:115–121

    Article  CAS  Google Scholar 

  120. Mengel K, Kirkby EA (1982) Principles of plant nutrition, 3rd edn. International Potash Institute, Worblaufen-Bern

    Google Scholar 

  121. Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosys 59(1):47–63

    Article  CAS  Google Scholar 

  122. Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Micronutrient deficiencies in global crop production Dordrecht. Springer, Dordrecht, pp 93–125

    Chapter  Google Scholar 

  123. Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc in plants. Chap 7. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 90–106

    Google Scholar 

  124. Grewal HS, Graham RD, Rengel Z (1996) Genotypic variation in zinc efficiency and resistance to crown rot disease (fusarium graminearum Schw group 1) in wheat. Plant Soil 186:219–226

    Article  CAS  Google Scholar 

  125. Streeter TC, Rengel Z, Neate SM, Graham RD (2001) Zinc fertilisation increases tolerance to Rhizoctonia solani (AG 8) in Medicago truncatula. Plant Soil 228:233–242

    Article  CAS  Google Scholar 

  126. Suri VK, Choudhary AK, Chander G, Verma TS (2011) Influence of vesicular arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus–deficient acid alfisol of Western Himalayas. Commun Soil Sci Plant Anal 42(10):1077–1186

    Article  Google Scholar 

  127. Rietra RPJJ, Heinen M, Dimkpa C, Bindraban PS (2015) Effects of nutrient antagonism and synergism on fertilizer use efficiency. VFRC Report 2015/5. Virtual Fertilizer Research Center, Washington, DC, p 42

    Google Scholar 

  128. Guilherme MR, Reis AV, Paulino AT, Moia TA, Mattoso LHC, Tambourgi EB (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117(6):3146–3154

    CAS  Google Scholar 

  129. Ni B, Liu M, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59(18):10169–10175

    Article  CAS  PubMed  Google Scholar 

  130. Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(1):318

    Article  PubMed  PubMed Central  Google Scholar 

  131. Aouada FA, de Moura MR, de Menezes AE, de Nogueira AR, Mattoso LHC (2008) Hydrogel synthesis and kinetics of ammonium and potassium release. Rev Bras Cenc Solo 32(4):1643–1649

    Article  CAS  Google Scholar 

  132. Cong Z, Yazhen S, Changwen D, Jianmin Z, Huoyan W, Xiaoqin C (2010) Evaluation of waterborne coating for controlled-release fertilizer using wurster fluidized bed. Ind Eng Chem Res 49(20):9644–9647

    Article  CAS  Google Scholar 

  133. USP (2003) General Chapter <711> Dissolution, USP 27, The United States Pharmacopeial Convention, Inc., Rockville, p 2303

    Google Scholar 

  134. Nagarjuna Reddy D, Vasudeva Reddy K, Hussain Reddy K (2011) Simple and sensitive spectrophotometric determination of Zn (II) in biological and pharmaceutical samples with 2-Benzoylpyridine thiosemicarbazone (BPT). J Chem Pharm Res 3(3):205–213

    CAS  Google Scholar 

  135. Anitha MS, Anil Kumar KS, Prashantha GM (2015) Distribution of plant available boron in major soil types and their correlation with other properties of the soil. Ecol Environ Conserv 21:S143–S148

    Google Scholar 

  136. Ma Z, Jia X, Hu J, Liu Z, Wang H, Zhou F (2013) Mussel-inspired thermosensitive polydopaminegraft- poly(N-isopropylacrylamide) coating for controlled-release fertilizer. J Agric Food Chem 61(50):12232–12237

    Article  CAS  PubMed  Google Scholar 

  137. Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled release fertilizers based on chitosan hydrogels. J Polym Environ 18(3):413–421

    Article  CAS  Google Scholar 

  138. Peppas NA, Franson NM (1983) The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J Polym Sci Polym Phys Edition 21:983–997

    Article  CAS  Google Scholar 

  139. Ritger PL, Peppas NAA (1987) Simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5(1):37–42

    Article  CAS  Google Scholar 

  140. Singh B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  141. Song CX, Labhasetwar L, Levy RJ (1997) Controlled release of U-86983 from double-layer biodegradable matrices: effect of additives on release mechanism and kinetics. J Control Release 45(21):177–192

    Article  CAS  Google Scholar 

  142. Chaudhary DR, Shukla LM, Gupta A (2005) Boron equilibria in soil - A review. Agric Rev 26(4):288–294

    Google Scholar 

  143. Biggar JW, Fireman M (1960) Boron adsorption and release by soils. Soil Sci Soc Am J 24(2):115

    Article  CAS  Google Scholar 

  144. Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53(2–3):125–141

    Article  CAS  Google Scholar 

  145. Sankar C, Mishra B (2003) Development and in vitro evaluation of gelatin a microspheres of ketorolac tromethamine for intranasal administration. Acta Pharma 53:101–110

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mishra, S., Mate, C.J., Thombare, N. (2022). Chemistry, Biological Activities, and Uses of Moi Gum. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics