Skip to main content

Genomic Designing for Abiotic Stress Tolerance in Pearl Millet [Pennisetum glaucum (L.) R. Br.]

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Cereal Crops

Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the fifth most important cereal crop followed by rice, wheat, maize, sorghum and is well-adapted to survive under drought, high temperature, salinity, lodging and poor soils. It is cultivated on 29 million ha in the arid and semi-arid tropical regions of Asia and Africa and is used as a staple food for around 90 million people. Pearl millet being a climate-resilient crop is very important to mitigate the adverse effects of changing climate and can also ensure increased income and food security. Various abiotic stresses are major threat for its growth and development causing severe losses in its yield potential. Among these abiotic stresses, drought stress is the most devastating constraint that can occur at any growth stage in pearl millet causing yield losses of upto 55–67%. During the last several decades, there has been lot of progress in pearl millet genetic improvement in India using both conventional as well as genomic approaches. Recently reported genome sequence information and several genomic studies for drought tolerance emphasize the need for exploiting its valuable attributes. Hence, there is a need to use modern genomic tools and genomic designing approaches to accelerate pearl millet improvement programs. Genomic approaches and genomic tools can definitely speed up gene innovation, trait mapping and can help in understanding of several complicated gene pathways and their interactions. Molecular approaches can be utilized to edit and design pearl millet genome in order to better identify different genes and biochemical pathways governing agronomically important characters like yield, salinity tolerance, drought and heat resistance, rancidity etc. In addition to bioinformatics and systems biology, different “omics” approaches like transcriptomics, proteomics and metabolomics can be useful for quantitative and qualitative analysis of gene expression allowing more precise use of marker assisted selection (MAS) and transgenic technologies. Keeping this in view, we tried to review the efforts made in pearl millet research towards genetic enhancement, improvement in inheritance and stability of the drought tolerance traits and use of newly developed genomic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding, 2nd edn. Blackwell Publishing, Malden, MA, p 756. ISBN 978-0-470-66475-9

    Google Scholar 

  • Agarwal PK, Agarwal P, Jain P, Jha B, Reddy MK, Sopory SK (2008) Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 27:105–115. https://doi.org/10.1007/s00299-007-0446-0

    Article  CAS  PubMed  Google Scholar 

  • Ajithkumar IP, Panneerselvam R (2014) ROS Scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense Roth under drought stress. Cell Bio-chem Biophyss 68(3):587–595

    Article  CAS  Google Scholar 

  • Ali GM, Khan NM, Hazara R, Mcneilly T (2004) Variability in the response of pearl millet [Pennisetum americanum (L.) Leeke] accessions to salinity. Acta Agron Hung 52:277–286

    Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102(8):1200–1205

    Article  CAS  Google Scholar 

  • Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing-a review. Emir J Food Agri 25:501–508

    Article  Google Scholar 

  • Ambawat S, Singh S, Shobhit, Meena RC, Satyavathi CT (2020) Biotechnological applications for improvement of the pearl millet crop. In: Gahlawat SK, Punia S, Siroha AK, Sandhu KS, Kaur M (eds) Pearl millet: properties, functionality and its applications, pp 115–138. Taylor & Francis (CRC Press), Boca Raton, Florida. https://doi.org/10.1201/9780429331732-7

  • Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  CAS  PubMed  Google Scholar 

  • Arya R, Singh M, Yadav A, Kumar S (2014) Advances in pearl millet to mitigate adverse environment conditions emerged due to global warming. Forage Res 40:57–70

    Google Scholar 

  • Athwal DS (1965) Hybrid bajara-1 marks a new era. Indian Farming 15(5):6–7

    Google Scholar 

  • Basavaraj G, ParthasarathyRao P, Bhagavatula S, Ahmed W (2010) Availability and utilization of pearl millet in India. J SAT Agric Res 8:1–6

    Google Scholar 

  • Bashir EMA, Ali AM, Ali AM, Mohamed ETI, Melchinger AE, Parzies HK et al (2014) Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genet Resour Crop Evol 62:579–591

    Article  Google Scholar 

  • Bhattacharjee R, Bramel J, Hash T, Kolesnikova-Allen A, Khairwal S (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee R, Khairwal I, Bramel P, Reddy K (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155:35–45

    Article  Google Scholar 

  • Bidinger FR, Mahalakshmi V, Rao GDP (1987) Assessment of drought resistance in pearl millet [Pennisetum americanum (L) Leeke]. Factors affecting yields under stress. Aust JAgric Res 38:37–48. https://doi.org/10.1071/AR9870037

    Article  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Bollam S, Pujarula V, Srivastava RK, Gupta RK (2018) Genomic approaches to enhance stress tolerance for productivity improvements in pearl millet. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, vol 3. Springer. Berlin/Heidelberg, Germany, pp 239–264

    Chapter  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Brocke KV, Christinck A, Weltzien E, Presterl T, Geiger HH (2003) Farmer’s seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Sci 43:1680–1689

    Article  Google Scholar 

  • Budak H, Pedraza F, Cregan PB, Baenziger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284

    Article  CAS  Google Scholar 

  • Burton GW (1951) Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J 43:409–417. https://doi.org/10.2134/agronj1951.00021962004300090001x

    Article  Google Scholar 

  • Busso CS, Devos KM, Ross G, Mortimore M, Adams WM, Ambrose MJ et al (2000) Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genet Resour Crop Evol 47:561–568

    Article  Google Scholar 

  • Chanwala J, Satpati S, Dixit A, Parida A, Giri MK, Dey N (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genom 21(1):1–16

    Article  Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Christinck A, Weltzien E, Hoffmann V (2005) Setting breeding objectives and developing seed systems with farmers: a handbook for practical use in participatory plant breeding projects. Margraf Publishers, Germany, p 188. ISBN 3-8236-1449-5

    Google Scholar 

  • Crossa J, de Gustavo LC, Paulino P, Daniel G, Juan B, José LA et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724. https://doi.org/10.1534/genetics.110.118521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De los Campos G et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Debieu M, Sine B, Passot S, Grondin A, Akata E, Gangashetty P et al (2018) Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS ONE 13(10): https://doi.org/10.1371/journal.pone.0201635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493. https://doi.org/10.1016/j.plaphy.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  • Deshpande RS, Rao VM (2004) Coarse cereals in a drought-prone region: a study in Karnataka social and economic change, monograph Series No. 2. Institute for Social and Economic Change, Bangalore, India

    Google Scholar 

  • Divya K, Kishor PK, Bhatnagar-Mathur P, Singam P, Sharma KK, Vadez V, Reddy PS (2019) Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Mol Biol Rep 46(6):6039–6052

    Google Scholar 

  • Dujardin M, Hanna WW (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80. https://doi.org/10.2135/cropsci1989.0011183X002900010019x

    Article  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash C (2012) Millets: genetic, and genomic resources. In: Janick J (ed) Plant breeding reviews, pp 247–375. John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Enjalbert J, Dawson JC, Paillard S, Rhoné B, Rousselle Y, Thomas M, Goldringer I (2011) Dynamic management of crop diversity: from an experimental approach to on-farm conservation. C R Biol 334(5–6):458–468. https://doi.org/10.1016/j.crvi.2011.03.005

    Article  PubMed  Google Scholar 

  • Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226–237

    Article  CAS  Google Scholar 

  • Gemenet DC, Hash CT, Sanogo MD, Sy O, Zangre RG, Leiser WL (2015) Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Res 171:54–66

    Article  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindaraj M, Shanmugasundaram P, Sumathi P, Muthiah AR (2010) Simple, rapid and cost effective screening method for drought resistant breeding in pearl millet. Elec J Plant Breed 1:590–599

    Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan India. Agric Water Manag 69:1–11. https://doi.org/10.1016/j.agwat.2004.03.014

    Article  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126(3):1266–1274

    Google Scholar 

  • Harlan JR, De-Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517. https://doi.org/10.2307/1218252

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1–11

    Article  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Google Scholar 

  • Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16(1):1048

    Google Scholar 

  • James D, Tarafdar A, Biswas K, Satyavathi CT, Padaria JC, Kumar PA (2015) Development and characterization of a high temperature responsive subtractive cDNA library in Pearl millet (Pennisetum glaucum (L.) R. Br.). Indian J Exp Biol 53:543–550

    PubMed  Google Scholar 

  • Jarquin D, Howard R, Liang Z, Gupta SK, Schnable JC, Crossa J (2020) Enhancing hybrid prediction in pearl millet using genomic and/or multi-environment phenotypic information of inbreds. Front Genet 10:1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Jhan F, Shah A, Gani A, Ahmad M, Noor N (2020) Nano-reduction of starch from under utilised millets: effect on structural, thermal, morphological and nutraceutical properties. Intl J Biol Macromol 159:1113–1121

    Article  CAS  Google Scholar 

  • Kanatti A, Rai KN, Radhika K, Govindaraj M (2016) Genetic architecture of open-pollinated varieties of pearl millet for grain iron and zinc densities. Indian J Genet 76:299–303. https://doi.org/10.5958/0975-6906.2016.00045.6

    Article  CAS  Google Scholar 

  • Kanfany G, Serba DD, Rhodes D, Bernardo A, Amand P, Gangashetty P et al (2020) Genomic diversity in pearl millet inbred lines derived from landraces and improved varieties. BMC Genome 21:469

    Article  CAS  Google Scholar 

  • Khan I, Raza MA, Awan SA, Khalid MHB, Raja N, Min S, Zhang A, Naeem M, Meraj TA, Iqbal N, Zhang, X (2019) in vitro effect of metallic silver nanoparticles (AgNPs): a novel approach toward the feasible production of biomass and natural antioxidants in pearl millet (Pennisetum glaucum L.). Appl Ecol Environ Res 17(6):12877–12892

    Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    Article  CAS  PubMed  Google Scholar 

  • Kholová J, Vadez V (2013) Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum). Funct Plant Biol 40:44-53

    Google Scholar 

  • Krishnamurthy L, Serraj R, Rai KN, Hash CT, Dakheel AJ (2007) Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158:179–188. https://doi.org/10.1007/s10681-007-9441-3

    Article  Google Scholar 

  • Krishnamurthy L, Zaman-Allah M, Purushothaman R, Irshad M, Vadez V (2011) Plant biomass productivity under abiotic stresses in SAT agriculture. In: Matovicb MD (ed) Biomass-detection, production and usage, pp 247–264. In Tech, London. https://doi.org/10.5772/17279

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S et al (2016) Nutraceutical value of finger millet (Eleusine coracana (L.) Gaertn.), and their improvement using omics approaches. Front Plant Sci 7:934 https://doi.org/10.3389/fpls.2016.00934

  • Kumara CD, Bantilan C, Rajalaxmi A, Rai KN, Yadav OP, Gupta SK et al (2014) Development and diffusion of pearl millet improved cultivars in india: impact on growth and yield stability. ICRISAT, Patancheru, India

    Google Scholar 

  • Kummari D, Bhatnagar-Mathur P, Sharma KK, Vadez V, Reddy PS (2020) Functional characterization of the promoter of pearl millet heat shock protein 10 (PgHsp10) in response to abiotic stresses in transgenic tobacco plants. Intl J Biol Macromol 156:103–110. https://doi.org/10.1016/j.ijbiomac.2020.04.069

    Article  CAS  Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    Article  CAS  Google Scholar 

  • Lahiri AN, Kumar V (1966) Studies on plant-water relationship III: further studies on the drought mediated alterations in the performance of bulrush millet. Proc Natl Inst Sci India B 32:116–129

    Google Scholar 

  • Lata C (2015) Advances in omics for enhancing abiotic stress tolerance in millets. Proc Indian Natl Sci Acad 81:397–417

    Google Scholar 

  • Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. In: Pandey GK (ed) The elucidation of abiotic stress signaling in plants, pp 195–225. Springer, New York, NY

    Google Scholar 

  • Liang, Z, Gupta, SK, Yeh CT, Zhan, Y, Ngu DW, Kumar H et al (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3: Genes Genom Genet 8:2513–2522 https://doi.org/10.1534/g3.118.200242

  • Mahalakshmi V, Bidinger FR, Raju DS (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crops Res 15:327–339. https://doi.org/10.1016/0378-4290(87)90020-7

    Article  Google Scholar 

  • Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M et al (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  CAS  PubMed  Google Scholar 

  • Mariac C, Jehin L, Saïdou AA, Thuillet AC, Couderc M, Sire P (2011) Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol Ecol 20:80–91

    Article  PubMed  Google Scholar 

  • Meena RP, Vishwakarma H, Ghosh G, Gaikwad K, Chellapilla TS, Singh MP, Padaria JC (2020) Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis. Plant Physiol Biochem 156:7–19

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BI, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by- sequencing (GBS) approach. Mol Breed 35(1):5–10

    Google Scholar 

  • Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS (2019) Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protec 121:103–112

    Article  CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Nepolean T, Gupta SK, Dwivedi SL, Bhattacharjee R, Rai KN, Hash CT (2012) Genetic diversity in maintainer and restorer lines of pearl millet. Crop Sci 52:2555

    Article  CAS  Google Scholar 

  • Onda Y, Mochida K (2016) Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genom 17(4):358–367

    Article  CAS  Google Scholar 

  • Oumar I, Mariac C, Pham J-L, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  CAS  PubMed  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb Technol 95:107–111

    Article  CAS  PubMed  Google Scholar 

  • Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc’h S, Ortega BM (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genpme 5:92–102

    CAS  Google Scholar 

  • Rai KN, Murty DS, Andrews DJ, Bramel-cox PJ (1999) Genetic enhancement of Pearl millet and sorghum for the semi-arid tropics of Asia and Africa. Genome 42:617–628

    Article  Google Scholar 

  • Rai KN, Yadav OP, Rajpurohit BS, Patil HT, Govindaraj M, Khairwal IS et al (2013) Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agric Res 11:1–7

    Google Scholar 

  • Raipuria R (2012) STMS molecular marker-based diversity analysis in pearl millet genotypes varying for seedling salinity stress. M.Sc. Thesis submitted to Devi Ahilya Vishwavidyalay Indore, Madhya Pradesh, India, p 57

    Google Scholar 

  • Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  PubMed  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomic 283:243–254. https://doi.org/10.1007/s00438-010-0518-7

    Article  CAS  Google Scholar 

  • Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Reddy MK (2012) Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39:7163–7174. https://doi.org/10.1007/s11033-012-1548-5

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Gowda MVC, Arya L, Verma M, Bansal KC (2016) Genetic and genomic resources of small millets. Crit Rev Plant Sci 35:56–79. https://doi.org/10.1080/07352689.2016.1147907

    Article  CAS  Google Scholar 

  • Saïdou AA, Mariac C, Luong V, Pham JL, Bezançon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910. https://doi.org/10.1186/1471-2164-14-159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saïdou AA, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet AC (2014) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the Phytochrome C gene in pearl millet. Theor Appl Genet 127:19–32. https://doi.org/10.1534/genetics.109.102756

    Article  CAS  PubMed  Google Scholar 

  • Sankar MS, Satyavathi CT, Singh MP, Bharadwaj C, Singh SP, Barthakur S (2013) Genetic variability and association studies in pearl millet for grain yield and high temperature stress tolerance. Indian J Dryland Agric Res Dev 8(2):71–76

    Google Scholar 

  • Sankar MS, Satyavathi CT, Singh MP, Bharadwaj C, Singh SP, Barthakur S (2014) Genetic diversity analysis for high temperature stress tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. Indian J Plant Physiol 19(4):324–329

    Google Scholar 

  • Satyavathi CT (2019) Project coordinator review. ICAR-AICRP on pearl millet. Agriculture University, Jodhpur, India, pp 1–12

    Google Scholar 

  • Satyavathi CT, Khandelwal V, Ambawat S (2019) R & D constraints and opportunities in pearl millet in India. One day national workshop on production, processing, value addition of nutricereals (millets) in India, held at CCS HAU, Hisar, India on 16 Sept 2019, pp 13–16

    Google Scholar 

  • Satyavathi CT, Khandelwal V, Supriya A, Beniwal BR, Sushila B, Mahesh CK, Yadav SL, Sewaliya M, Meena H (2020) Pearl millet-hybrids and varieties 2020. ICAR-All India coordinated research project on pearl millet, Mandor, Jodhpur, India, p 37

    Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE 10(5)

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Hash CT, Rizvi SMH, Sharma A, Yadav RS, Bidinger FR (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:332–335

    Article  Google Scholar 

  • Sharma PC, Singh D, Sehgal D, Singh G, Hash CT, Yadav RS (2014) Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environ Exp Bot 102:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Dudhate A, Anand L, Tsugama D, Gupta SK, Liu S, Takano T (2020) Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. S Afr J Bot 132:395–402

    Article  CAS  Google Scholar 

  • Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant MolBiol 103:639–652. https://doi.org/10.1007/s11103-020-01015-w

    Article  CAS  Google Scholar 

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK, Satyavati T, Dai XF, Chen JY, Mocan A, Singh BP (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  • Singh P, Rai KN, Witcombe JR, Andrews DJ (1988) Population breeding methods in pearl millet improvement (Pennisetum americanum). L’Agron Trop 43:185–193

    Google Scholar 

  • Singh SP, Satyavathi CT, Sankar SM (2014) Hybrid breeding in pearl millet: past and present status. In: ChawlaHS Shrotria PK, Jeena AS (eds) New paradigms in heterosis breeding: conventional and molecular approaches. Indian Agricultural Statistics Research Institute, New Delhi, India

    Google Scholar 

  • Singh J, Reddy PS, Reddy S, Reddy M (2015) Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4:55–63. https://doi.org/10.1016/j.plgene.2015.08.002

    Article  CAS  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:1004982

    Article  Google Scholar 

  • Srivastava RK, Singh RB, Lakshmi V, Pujarula, Srikanth, Bollam, Pusuluri M, Satyavathi CT, Yadav RS, Gupta R (2020) Genome wide association studies and genomic selection in Pearl millet: advances and prospects. Front Genet 10. https://www.frontiersin.org/article/10.3389/fgene.2019.01389/full

  • Stich B, Haussmann BI, Pasam R, Bhosale S, Hash CT, Melchinger AE et al (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biol 10:216

    Google Scholar 

  • Sun M, Huang D, Zhang A, Khan I, Yan H, Wang X, Zhang X, Zhang J, Huang L (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol 20(1):1–15

    Article  CAS  Google Scholar 

  • Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya, A, Kumar S, Kumari BR, Bhanuprakash A (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14(1):159

    Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar HM, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Tharanya M, Kholova J, Sivasakthi K, Seghal D, Hash CT, Raj B et al (2018) Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine mapping population of pearl millet (Pennisetum glaucum L. R. Br.) Theor Appl Genet. https://doi.org/10.1007/s00122-018-3094-6

  • Tiwari S, Lata C (2019) Genome engineering in rice: applications, advancements and future perspectives. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 323–337

    Chapter  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Singh Chauhan P, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genom 18(6):469–482

    Article  CAS  Google Scholar 

  • Twomlow S, Shiferaw B, Cooper P, Keatinge JDH (2008) Integrating genetics and natural resource management for technology targeting and greater impact of agricultural research in the semi-arid tropics. Exp Agric 44:235–256

    Article  Google Scholar 

  • Vadez V, Hash T, Bidinger FR, Kholova J (2012) Phenotyping pearl millet for adaptation to drought. Front Physiol 3:1–386. https://doi.org/10.3389/fphys.2012.00386

    Article  CAS  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35(10):969. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2(4):275–292

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Howarth CJ (1999) QTL analysis and marker-assisted breeding of traits associated with drought tolerance in pearl millet. In: Ito O, O’Toole J, Hardy B (eds) Genetic improvement of rice for water-limited environments. International Rice Research Institute, Manila, Philippines, pp 221–233

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of postflowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2010) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62:397–408. https://doi.org/10.1093/jxb/erq265

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62:397–408

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Arya RK, Narwal MS (2014) Screening of pearl millet F1 hybrids for heat tolerance at early seedling stage. Adv Agric 2014:17

    Google Scholar 

  • Zaveri PP, Phul PS, Dhillon BS (1989) Observed and predicted genetic gains from single and mutli trait selections using three mating designs in pearl millet. Plant Breed 103:270–277

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tara Satyavathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tara Satyavathi, C. et al. (2021). Genomic Designing for Abiotic Stress Tolerance in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-75875-2_6

Download citation

Publish with us

Policies and ethics