Skip to main content

Water-borne Polyurethane-Metal Oxide Nanocomposite Applications

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Abstract

The biodegradable property of the water-borne polyurethanes (WPU) potentially replaces the use of conventional polyurethanes (PU). Some unique properties of the water-borne polyurethanes (WPU) include retardation capability of flames, non-toxic nature, and cheap production cost. Water-borne polyurethanes (WPU) can easily be synthesized in a medium of water with an organic synthesis process. It is also possible to remove the hydrophobic groups with new derivative polymers while synthesis. The main constituent of the water-borne polyurethanes (WPU) includes ionic moieties and ionomers. For a broad range of industrial applications, nanofillers need to add inside the matrix of the water-borne polyurethanes (WPU). The role of these nanofillers is in general to reinforce the water-borne polyurethanes (WPU) matrix with enhanced properties. For instance, iron oxide nanoparticles can be added with the water-borne polyurethanes (WPU) as a material for shape memory (SMM) applications. The addition of the iron oxide can reduce the recovery time as well as the hyperthermia behavior of the nanoparticles helps in induction heating. Hence, the Fe3O4—water-borne polyurethanes (WPU) material can be used inside the injured tissues for potential treatments as stents, removal of the blood clots, teeth/jaws malpositioning fixing, control drug delivery, etc. Similarly, another metal oxide like TiO2 reinforcement in water-borne polyurethanes (WPU) can act as a biomimetic material for stem cell application. ZnO-water-borne polyurethanes (WPU) matrix was also successfully utilized as EMI shielding material. Some reports suggested SnO2-water-borne polyurethanes (WPU) material as thermal insulators and SiO2-water-borne polyurethanes (WPU) material as an adhesive for thin films. Hence, the overall behavior of the water-borne polyurethanes (WPU) enhances many folds due to the strong ionic interaction of the matrix of the water-borne polyurethanes (WPU) and metal oxides nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., & Anwer, S. (2019). Modulating the burst drug release effect of waterborne polyurethane matrix by modifying with polymethylmethacrylate. Journal of Applied Polymer Science, 136(13), 47253.

    Article  Google Scholar 

  • Bahadur, A., Shoaib, M., Iqbal, S., Saeed, A., ur Rahman, M. S., & Channar, P. A. (2018). Regulating the anticancer drug release rate by controlling the composition of waterborne polyurethane. Reactive and Functional Polymers, 131, 134–141.

    Google Scholar 

  • Banerjee, P., & Franco Jr., A. (2016) Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic. Materials Letters, 184, 17–20.

    Google Scholar 

  • Banerjee, P., & Franco Jr., A. (2017). Substitution‐induced near phase transition with Maxwell–Wagner polarization in SrBi2 (Nb1−xAx) 2O9 ceramics [A= W, Mo and x= 0, 0.025]. Physica Status Solidi (A), 214(10), 1700067.

    Google Scholar 

  • Banerjee, P., & Franco Jr., A. (2019). Role of higher valent substituent on the dielectric and optical properties of Sr0. 8Bi2. 2Nb2O9 ceramics. Materials Chemistry and Physics, 225, 213–218.

    Google Scholar 

  • Banerjee, P., Ghosh, G., & Biswas, S. K. (2007). A simple technique for the measurement of the permittivity of medium loss samples using cavity perturbation method. In 2007 IEEE Applied Electromagnetics Conference (AEMC) 2007 (pp. 1–3). IEEE.

    Google Scholar 

  • Banerjee, P., Ghosh, G., & Biswas, S. K. (2008). Measurement of the dielectric constant of medium loss cylindrical-shaped samples using cavity perturbation method. In 2008 International Conference on Recent Advances in Microwave Theory and Applications 2008 (pp. 124–125). IEEE.

    Google Scholar 

  • Banerjee, P., Ghosh, G., & Biswas, S. K. (2009). A system to measure dielectric constant and loss of liquids at microwave frequencies. In 2009 Applied Electromagnetics Conference (AEMC) (pp. 1–2). IEEE.

    Google Scholar 

  • Banerjee, P., Ghosh, G., & Biswas, S. K. (2010). Measurement of dielectric properties of medium loss samples at X-band frequencies. Journal of Metallurgy and Materials Science, 52(3), 247–255.

    Google Scholar 

  • Banerjee, P., Ghosh, G., & Biswas, S. K. (2011). A simple method to determine the dielectric constant of small-sized medium-loss samples at X-band frequencies. International Journal of Electromagnetics and Application 12–15.

    Google Scholar 

  • Benhamou, K., Kaddami, H., Magnin, A., Dufresne, A., & Ahmad, A. (2015). Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydrate Polymers, 122, 202–211.

    Article  Google Scholar 

  • Bhattarchya, S., De, D., Ghosh, S., Banerjee, P., Saha, S., Mitra, M., Nag, B., Pal, M., Biswas, S. K., & Ghatak, K. P. (2010). Influence of external light waves on the thermoelectric power under strong magnetic field in ultrathin films, quantum wires and quantum dots of optoelectronic materials. Journal of Computational and Theoretical Nanoscience, 7(6), 1066–1084.

    Article  Google Scholar 

  • Cao, X., Chang, P. R., & Huneault, M. A. (2008). Preparation and properties of plasticized starch modified with poly (ε-caprolactone) based waterborne polyurethane. Carbohydrate Polymers, 71(1), 119–125.

    Article  Google Scholar 

  • Cao, X., Dong, H., & Li, C. M. (2007). New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules, 8(3), 899–904.

    Article  Google Scholar 

  • Cao, X., Zhang, L., Huang, J., Yang, G., & Wang, Y. (2003). Structure–properties relationship of starch/waterborne polyurethane composites. Journal of Applied Polymer Science, 90(12), 3325–3332.

    Article  Google Scholar 

  • Chang, P. R., Ai, F., Chen, Y., Dufresne, A., & Huang, J. (2009). Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. Journal of Applied Polymer Science, 111(2), 619–627.

    Google Scholar 

  • Chen, G., Wei, M., Chen, J., Huang, J., Dufresne, A., & Chang, P. R. (2008). Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 49(7), 1860–1870.

    Article  Google Scholar 

  • Cui, G., Fan, H., Xia, W., Ai, F., & Huang, J. (2008). Simultaneous enhancement in strength and elongation of waterborne polyurethane and role of star-like network with lignin core. Journal of Applied Polymer Science, 109(1), 56–63.

    Article  Google Scholar 

  • De, D., Kumar, A., Adhikari, S. M., Pahari, S., Islam, N., Banerjee, P., Biswas, S. K., Bhattacharya, S., & Ghatak, K. P. (2010). Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials. Superlattices and Microstructures, 47(3), 377–410.

    Article  Google Scholar 

  • Dong, Y. M., Jin, Y. W., & Zhang, Z. J. (2011). Synthesis and application of polyurethane hydrogel carrier on nitrobacteria immobilization. In Advanced Materials Research 2011 (Vol. 152, pp. 1533–1536). Trans Tech Publications Ltd.

    Google Scholar 

  • Feng, J., Huang, B., & Zhong, M. (2009). Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding. Journal of Colloid and Interface Science, 336(1), 268–272.

    Article  Google Scholar 

  • Franco Jr, A., Banerjee, P., & Romanholo, P. L. (2018a) Effect of composition induced transition in the optical band-gap, dielectric and magnetic properties of Gd doped Na0. 5Bi0.5TiO3 complex perovskite. Journal of Alloys and Compounds, 764, 122–127.

    Google Scholar 

  • Franco Jr, A., Banerjee, P., & Lima, R. J. (2018b). Dielectric and magnetic properties of three-layers laminated ceramic composite, K0.5Na0.5NbO3/CoFe2O4/K0.5Na0.5NbO3. Journal of Materials Science: Materials in Electronics. 2018;29(5):4357–4364.

    Google Scholar 

  • Fu, H., Yan, C., Zhou, W., & Huang, H. (2013). Preparation and characterization of a novel organic montmorillonite/fluorinated waterborne polyurethane nanocomposites: Effect of OMMT and HFBMA. Composites Science and Technology, 85, 65–72.

    Article  Google Scholar 

  • Fu, H., Yan, C., Zhou, W., & Huang, H. (2014). Nano-SiO2/fluorinated waterborne polyurethane nanocomposite adhesive for laminated films. Journal of Industrial and Engineering Chemistry, 20(4), 1623–1632.

    Article  Google Scholar 

  • Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068–2075.

    Article  Google Scholar 

  • Gogoi, S., & Karak, N. (2014). Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustainable Chemistry & Engineering., 2(12), 2730–2738.

    Article  Google Scholar 

  • Gogoi, S., Kumar, M., Mandal, B. B., & Karak, N. (2015). High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Composites Science and Technology, 118, 39–46.

    Article  Google Scholar 

  • Guo, W. J., Fu, H. Q., Li, F. Y., Huang, H., & Chen, H. Q. (2009). Study on the mechanical and adhesive properties of waterborne polyurethane with multiple modifications. Journal of Chemical Engineering of Chinese Universities, 2, 246–251.

    Google Scholar 

  • Huang, Y., Yu, H., & Xiao, C. (2006). Effects of Ca2+ crosslinking on structure and properties of waterborne polyurethane-carboxymethylated guar gum films. Carbohydrate Polymers, 66(4), 500–513.

    Article  Google Scholar 

  • Huang, J., Zou, J. W., Chang, P. R., Yu, J. H., & Dufresne, A. (2011). New waterborne polyurethane-based nanocomposites reinforced with low loading levels of chitin whisker. Express polymer letters, 5(4).

    Google Scholar 

  • Ji, X., Zhou, Y., Zhang, B., Hou, C., & Ma, G. (2013). Polydimethylsiloxane and castor oil comodified waterborne polyurethane. ISRN Polymer Science.

    Google Scholar 

  • Lai, X., Shen, Y., & Wang, L. (2011). Preparation and properties of self-crosslinkable polyurethane/silane hybrid emulsion. Journal of Polymer Research, 18(6), 2425–2433.

    Article  Google Scholar 

  • Lee, I. H., Bae, S. Y., Kim, & B. K. (2018). Biodegradable waterborne polyurethane with modified hydroxyethylcellulose. Express Polymer Letters, 12(9).

    Google Scholar 

  • Lee, D. S., Hur, P., & Kim, B. K. (2017). Chemical hybridization of waterborne polyurethane with β-cyclodextrin by sol-gel reaction. Progress in Organic Coatings, 111, 107–111.

    Article  Google Scholar 

  • Lee, H. T., Hwang, J. J., & Liu, H. J. (2006). Effects of ionic interactions between clay and waterborne polyurethanes on the structure and physical properties of their nanocomposite dispersions. Journal of Polymer Science Part a: Polymer Chemistry, 44(19), 5801–5807.

    Article  Google Scholar 

  • Lee, S. J., & Kim, B. K. (2012). Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability. Carbohydrate Polymers, 87(2), 1803–1809.

    Article  Google Scholar 

  • Lee, T. J., Kwon, S. H., & Kim, B. K. (2014). Biodegradable sol–gel coatings of waterborne polyurethane/gelatin chemical hybrids. Progress in Organic Coatings, 77(6), 1111–1116.

    Article  Google Scholar 

  • Lee, H. T., Tsou, C. H., Li, C. L., Gu, J. H., Wu, C. L., Hwang, J. J., & Suen, M. C. (2018). Preparation and characterization of biodegradable polyurethane composites containing attapulgite nanorods. Advances in Polymer Technology, 37(1), 208–220.

    Article  Google Scholar 

  • Lei, W., Zhou, X., Fang, C., Song, Y., & Li, Y. (2019). Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydrate Polymers, 209, 299–309.

    Article  Google Scholar 

  • Li, X., Hu, J., Sun, D., & Zhang, Y. (2014a). Nanosilica reinforced waterborne siloxane-polyurethane nanocomposites prepared via “click” coupling. Journal of Coatings Technology and Research, 11(4), 517–531.

    Article  Google Scholar 

  • Li, X. J., Sun, D. X., & Zhang, Y. H. (2014b). The Cu (I)-mediated azide–alkyne cycloadditions as a facile and efficient route for functionalization of waterborne polyurethane. Journal of Polymer Research, 21(1), 320.

    Article  Google Scholar 

  • Li, S. C., Wang, L. W., & Wang, J. Y. (2012). Study on properties of modified nano-ZnO/water-borne polyurethanes (WPU) hybrid material. In Advanced Materials Research 2012 (Vol. 510, pp. 742–746). Trans Tech Publications Ltd.

    Google Scholar 

  • Li, M., Xiao, Y., Chen, Y., Ni, H., Cai, J., Wang, X., Chang, P. R., Anderson, D. P., & Chen, Y. (2016). Soy protein-modified waterborne polyurethane biocomposites with improved functionality. RSC Advances, 6(16), 12837–12849.

    Article  Google Scholar 

  • Liang, H., Feng, Y., Lu, J., Liu, L., Yang, Z., Luo, Y., Zhang, Y., & Zhang, C. (2018). Bio-based cationic waterborne polyurethanes dispersions prepared from different vegetable oils. Industrial Crops and Products, 122, 448–455.

    Article  Google Scholar 

  • Liu, H., Cui, S., Shang, S., Wang, D., & Song, J. (2013). Properties of rosin-based waterborne polyurethanes/cellulose nanocrystals composites. Carbohydrate Polymers, 96(2), 510–515.

    Article  Google Scholar 

  • Liu, H., Li, C., & Sun, X. S. (2017b). Soy-oil-based waterborne polyurethane improved wet strength of soy protein adhesives on wood. International Journal of Adhesion and Adhesives, 73, 66–74.

    Article  Google Scholar 

  • Liu, C. H., Lee, H. T., Tsou, C. H., Gu, J. H., Suen, M. C., & Chen, J. K. (2017a). In Situ Polymerization and characteristics of biodegradable waterborne thermally-treated attapulgite nanorods and polyurethane composites. Journal of Inorganic and Organometallic Polymers and Materials., 27(1), 244–256.

    Article  Google Scholar 

  • Liu, K., Miao, S., Su, Z., Sun, L., Ma, G., & Zhang, S. (2016). Castor oil-based waterborne polyurethanes with tunable properties and excellent biocompatibility. European Journal of Lipid Science and Technology, 118(10), 1512–1520.

    Article  Google Scholar 

  • Ma, L., Li, J., & Luo, Y. (2006). Comparison of shape memory properties of cross-linking and linear water-based polyurethane. Chemical Industry and Engineering Progress., 25(1), 78.

    Google Scholar 

  • Ma, J., Xu, Q., Gao, D., Zhou, J., & Zhang, J. (2012). Blend composites of caprolactam-modified casein and waterborne polyurethane for film-forming binder: Miscibility, morphology and properties. Polymer Degradation and Stability, 97(8), 1545–1552.

    Article  Google Scholar 

  • Miskolczi, N., Sedlarik, V., Kucharczyk, P., & Riegel, E. (2018). Enhancement of the mechanical properties of a polylactic acid/flax fiber biocomposite by water-borne polyurethanes (WPU), water-borne polyurethanes (WPU)/Starch, and TPS polyurethanes using coupling additives. Mechanics of Composite Materials, 53(6), 791–800.

    Article  Google Scholar 

  • Naz, F., Zuber, M., Zia, K. M., Salman, M., Chakraborty, J., Nath, I., & Verpoort, F. (2018). Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydrate Polymers, 200, 54–62.

    Article  Google Scholar 

  • Nikje, M. M., & Tehrani, Z. M. (2010). Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites. Polymer-Plastics Technology and Engineering, 49(8), 812–817.

    Article  Google Scholar 

  • Omrani, I., Babanejad, N., Shendi, H. K., & Nabid, M. R. (2017). Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release. Materials Science and Engineering: C, 70, 607–616.

    Article  Google Scholar 

  • Ou, C. W., Su, C. H., Jeng, U. S., & Hsu, S. H. (2014). Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Applied Materials & Interfaces, 6(8), 5685–5694.

    Article  Google Scholar 

  • Pereira, L. G., e Silva, R. L., Banerjee, P., Franco Jr., A. (2020). Role of Gd3+ ions on the magnetic hyperthermic behaviour of anisotropic CoFe2O4 nanoparticles. Physica B: Condensed Matter 412140.

    Google Scholar 

  • Pessoni, H. V., Alves, T. E., Banerjee, P., & Júnior, A. F. (2019). Functional properties of Ho3+ substituted cobalt ferrite in the context of the reduced mass model. Physica B: Condensed Matter, 575, 411676.

    Google Scholar 

  • Rad, F. H., Sharifan, A., & Asadi, G. (2017). Miscibility and morphology of kefiran/waterborne polyurethane blend films. International Journal of Food Properties, 20(sup3), S2764–S2775.

    Article  Google Scholar 

  • Ratkovski, D. R., Ribeiro, P. R., Machado, F. L., Banerjee, P., Franco Jr., A. (2018). On the magnetic properties of the multiferroic ceramics Bi0.99Y0.01Fe1−xNixO3 (0.01⩽ x⩽ 0.05). Journal of Magnetism and Magnetic Materials, 451, 620–624.

    Google Scholar 

  • Ren, L., Guo, X., Zhao, Y., & Qiang, T. (2019). Synthesis and properties of waterborne polyurethane incorporated with phenolic acid grafted oligochitosan. Progress in Organic Coatings, 135, 410–416.

    Article  Google Scholar 

  • Saeedi, S., Omrani, I., Bafkary, R., Sadeh, E., Shendi, H. K., & Nabid, M. R. (2019). Facile preparation of biodegradable dual stimuli-responsive micelles from waterborne polyurethane for efficient intracellular drug delivery. New Journal of Chemistry, 43(47), 18534–18545.

    Article  Google Scholar 

  • Saetung, A., Rungvichaniwat, A., Tsupphayakorn-ake, P., Bannob, P., Tulyapituk, T., & Saetung, N. (2016). Properties of waterborne polyurethane films: Effects of blend formulation with hydroxyl telechelic natural rubber and modified rubber seed oils. Journal of Polymer Research, 23(12), 264.

    Article  Google Scholar 

  • Shang, S., Chiu, K. L., Yuen, M. C., & Jiang, S. (2014). The potential of cuttlebone as reinforced filler of polyurethane. Composites Science and Technology, 93, 17–22.

    Article  Google Scholar 

  • She, Y., Zhang, H., Song, S., Lang, Q., & Pu, J. (2013). Preparation and characterization of waterborne polyurethane modified by nanocrystalline cellulose. BioResources, 8(2), 2594–2604.

    Article  Google Scholar 

  • Shin, E. J., & Choi, S. M. (2018). Advances in waterborne polyurethane-based biomaterials for biomedical applications. In Novel Biomaterials for Regenerative Medicine 2018 (pp. 251–283). Springer.

    Google Scholar 

  • Song, Y. Q., Gao, Y. L., Pan, Z. C., Zhang, Y., Li, J. H., Wang, K. J., Li, J. S., Tan, H., & Fu, Q. (2016). Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. Chinese Journal of Polymer Science, 34(6), 679–687.

    Article  Google Scholar 

  • Sun, D., Li, R., Li, X., Wang, W., & Hu, J. (2012). Fabrication of functional waterborne polyurethane/montmorillonite composites by click chemistry method. Combinatorial Chemistry & High Throughput Screening, 15(7), 522–528.

    Article  Google Scholar 

  • Tian, H., Wang, Y., Zhang, L., Quan, C., & Zhang, X. (2010). Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Industrial Crops and Products, 32(1), 13–20.

    Article  Google Scholar 

  • Tsou, C. H., Lee, H. T., Hung, W. S., De Guzman, M., Chen, S. T., Suen, M. C., & Wicaksono, S. T. (2017). Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units. Polymer Bulletin, 74(4), 1121–1143.

    Article  Google Scholar 

  • Valentin, C. B., e Silva, R. L., Banerjee, P., & Franco Jr., A. (2019). Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Materials Science in Semiconductor Processing, 96, 122–126.

    Google Scholar 

  • Wan, T., & Chen, D. (2018). Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide. Progress in Organic Coatings, 121, 73–79.

    Article  Google Scholar 

  • Wang, Y. J., Jeng, U. S., & Hsu, S. H. (2018b). Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 4(4), 1397–1406.

    Article  Google Scholar 

  • Wang, W., Lu, L., Xie, Y., Yuan, W., Wan, Z., Tang, Y., & Teh, K. S. (2020). A highly stretchable microsupercapacitor using laser-induced Graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Advanced Materials Technologies, 5(2), 1900903.

    Article  Google Scholar 

  • Wang, Y., Lue, A., & Zhang, L. (2009). Rheological behavior of waterborne polyurethane/starch aqueous dispersions during cure. Polymer, 50(23), 5474–5481.

    Article  Google Scholar 

  • Wang, Y., & Zhang, L. (2008). High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals. Journal of Nanoscience and Nanotechnology, 8(11), 5831–5838.

    Article  Google Scholar 

  • Wang, N., Zhang, L., & Gu, J. (2005). Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science, 95(2), 465–473.

    Article  Google Scholar 

  • Wang, N., Zhang, L., & Lu, Y. (2004). Effect of the particle size in dispersions on the properties of waterborne polyurethane/casein composites. Industrial & Engineering Chemistry Research, 43(13), 3336–3342.

    Article  Google Scholar 

  • Wang, J., Zhang, H., Miao, Y., Qiao, L., Wang, X., & Wang, F. (2018a). Microphase separation idea to toughen CO2-based waterborne polyurethane. Polymer, 138, 211–217.

    Article  Google Scholar 

  • Wang, Y., Tian, H., & Zhang, L. (2010). Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydrate Polymers, 80(3), 665–671.

    Article  Google Scholar 

  • Wang, N., & Zhang, L. (2005). Preparation and characterization of soy protein plastics plasticized with waterborne polyurethane. Polymer International, 54(1), 233–239.

    Article  MathSciNet  Google Scholar 

  • Wu, G. M., Chen, J., Huo, S. P., Liu, G. F., & Kong, Z. W. (2014). Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydrate Polymers, 105, 207–213.

    Article  Google Scholar 

  • Wu, Q., & Zhang, L. (2001). Preparation and characterization of thermoplastic starch mixed with waterborne polyurethane. Industrial & Engineering Chemistry Research, 40(2), 558–564.

    Article  Google Scholar 

  • Xiaojuan, L., Xiaorui, L., Lei, W., & Yiding, S. (2010). Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polymer Bulletin, 65(1), 45–57.

    Article  Google Scholar 

  • Xu, X., Shang, S., Song, Z., Cui, S., Wang, H., & Wang, D. (2011). Preparation and characterization of rosin-based waterborne polyurethane from maleopimaric acid polyester polyol. BioResources, 6(3), 2460–2470.

    Google Scholar 

  • Xu, Y., Yang, Y., Yan, D. X., Duan, H., Zhao, G., & Liu, Y. (2019). Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chemical Engineering Journal, 360, 1427–1436.

    Article  Google Scholar 

  • Yeh, J. M., Yao, C. T., Hsieh, C. F., Yang, H. C., & Wu, C. P. (2008). Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst. European Polymer Journal, 44(9), 2777–2783.

    Article  Google Scholar 

  • Yu, S. H., Mi, F. L., Shyu, S. S., Tsai, C. H., Peng, C. K., & Lai, J. Y. (2006). Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes. Journal of Membrane Science, 276(1–2), 68–80.

    Article  Google Scholar 

  • Zeng, M., Zhang, L., Wang, N., & Zhu, Z. (2003). Miscibility and properties of blend membranes of waterborne polyurethane and carboxymethylchitin. Journal of Applied Polymer Science, 90(5), 1233–1241.

    Article  Google Scholar 

  • Zeng, M., Zhang, L., & Zhou, Y. (2004). Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer, 45(10), 3535–3545.

    Article  Google Scholar 

  • Zhang, M., Song, F., Wang, X. L., & Wang, Y. Z. (2012a). Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids and Surfaces B: Biointerfaces, 100, 16–21.

    Article  Google Scholar 

  • Zhang, F., Wang, R., He, Y., Lin, W., Li, Y., Shao, Y., Li, J., Ding, M., Luo, F., Tan, H., & Fu, Q. (2018). A biomimetic hierarchical structure with a hydrophilic surface and a hydrophobic subsurface constructed from waterborne polyurethanes containing a self-assembling peptide extender. Journal of Materials Chemistry B, 6(26), 4326–4337.

    Article  Google Scholar 

  • Zhang, L., Zhang, H., & Guo, J. (2012b). Synthesis and properties of UV-curable polyester-based waterborne polyurethane/functionalized silica composites and morphology of their nanostructured films. Industrial & Engineering Chemistry Research, 51(25), 8434–8441.

    Article  Google Scholar 

  • Zhang, G., Zou, M., Wang, S., & Zhang, Z. (2006). Radiation-induced dispersion polymerization of methyl methacrylate using waterborne polyurethane as stabilizer. Polymer International, 55(9), 1099–1103.

    Article  Google Scholar 

  • Zhao, Z., Jing, Z., Qiu, F., Dai, Y., Xu, J., Yu, Z., & Yang, P. (2017). Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate. In AIP Conference Proceedings 2017 (Vol. 1794, No. 1, p. 020026). AIP Publishing LLC.

    Google Scholar 

  • Zhong, S. L., & Cai, B. Z. (2009). Exploiting and application of environment-friendly waterborne polyurethane filmlaminated adhesives for soft packaging. China Adhesives, 5.

    Google Scholar 

  • Zhou, X., Li, Y., Fang, C., Li, S., Cheng, Y., Lei, W., & Meng, X. (2015). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science & Technology, 31(7), 708–722.

    Article  Google Scholar 

  • Zhu, Q., Li, X., Fan, Z., Xu, Y., Niu, H., Li, C., Dang, Y., Huang, Z., Wang, Y., & Guan, J. (2018). Biomimetic polyurethane/TiO2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. Materials Science and Engineering: C, 85, 79–87.

    Article  Google Scholar 

  • Zia, F., Zia, K. M., Zuber, M., Kamal, S., & Aslam, N. (2015). Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers, 134, 784–798.

    Article  Google Scholar 

  • Zou, J., Zhang, F., Huang, J., Chang, P. R., Su, Z., & Yu, J. (2011). Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites. Carbohydrate Polymers, 85(4), 824–831.

    Article  Google Scholar 

Download references

Acknowledgments

P. Banerjee sincerely thanks UGC, New Delhi for the grant no.F.30-457/2018 (BSR)-start-up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, P., Franco, A., Chandra Babu Naidu, K., Suresh Kumar, N. (2021). Water-borne Polyurethane-Metal Oxide Nanocomposite Applications. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_10

Download citation

Publish with us

Policies and ethics