Skip to main content
Log in

Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study used dicyclohexylmethane 4,4-diisocyanate, polybutylene adipate, polyether-1,3-diol, and 2,6-pyridinedimethanol to synthesize a novel water-based polyurethane (WPU) that contained pyridyl units. To enhance the thermal, mechanical, swelling, and antimicrobial properties of the WPU, various metals (silver nitrate, copper acetate, cobalt acetate, and zinc acetate) were incorporated to form WPU/metal composites. In addition, the study investigated the effects of the metal types on the WPU properties. Fourier transform infrared spectroscopy was used to confirm the synthesis of the WPU containing pyridine. Atomic force microscopy illustrated that the added metals increased the WPU surface roughness. The contact angle and degree of swelling tests demonstrated that the added metal reduced the WPU hydrophilicity, and with the addition of other metal types, the hydrophobicity increased considerably. Thermal gravimetric analysis indicated that the initial decomposition temperature of the highest WPU thermal stability was attributed to zinc. In addition, the results of differential scanning calorimetry and dynamic mechanical analysis showed that adding a small amount of metal increased the hard and soft segment glass transition temperatures. A universal strength tester validated that the WPU mechanical properties varied with the different metal additives and that the WPU strength increased. However, the WPU toughness and ductility decreased with the addition of metals; silver provided the highest mechanical strength. An antimicrobial test indicated that silver enhanced the antimicrobial property. The moisture permeability and waterproof property of the WPU coating was also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim BK (1996) Aqueous Polyurethane Dispersions. Colloid Polym Sci 275(4):599–611

    Article  Google Scholar 

  2. Chen GN, Chen KN (1997) Self-Curing Behaviors of Single Pack Aqueous-Based Polyurethane System. J Appl Polym Sci 63(12):1609–1623

    Article  CAS  Google Scholar 

  3. Diterich D, Keberie W, Witt H (1970) Polyurethane Ionomers, a New Class of Block Polymers. Chem Int Ed Engl 9(1):40–50

    Article  Google Scholar 

  4. Coutinho FMB, Delpech MC (1996) Some Properties of Films Cast from Polyurethane Aqueous Dispersions of Polyether-Based Anionomer Extended with Hydrazine. Polym Testing 15(2):103–113

    Article  CAS  Google Scholar 

  5. Delpech MC, Coutinho FMB (2000) Waterborne anionic polyurethanes and poly(urethane-urea)s: influence of the chain extender on mechanical and adhesive properties. Polym Testing 19(8):939–952

    Article  CAS  Google Scholar 

  6. Shao CH, Huang JJ, Chen GN, Yeh JT, Chen KN (1999) Thermal and combustion behaviors of aqueous-based polyurethane system with phosphorus and nitrogen containing curing agent. Polym Degrad Stab 65(3):359–371

    Article  CAS  Google Scholar 

  7. Datta J, Pasternak S (2005) Oligourethane glycols obtained in glycolysis of polyurethane foam as semi-finished products for cast urethane elastomers preparation. Polimery 50(5):352–357

    CAS  Google Scholar 

  8. Datta J, Glowinska E (2014) Chemical modifications of natural oils and examples of their usage for polyurethane synthesis. Journal of Elastomers and Plastics 46(1):33–42

    Article  Google Scholar 

  9. Datta J, Glowinska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Ind Crops Prod 61:84–91

    Article  CAS  Google Scholar 

  10. Tsou CH, Lee HT, De Guzman M, Tsai HA, Wang PN, Cheng HJ, Suen MC (2015) Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O. Polym Bull 72:1545–1561

    Article  CAS  Google Scholar 

  11. Tsou C-H, Suen M-C, Yao W-H, Yeh J-T, Wu C-S, Tsou C-Y, Chiu S-H, Chen J-C, Wang RY, Lin S-M, Hung W-S, De Guzman M, Hu C-C, Lee K-R (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials. 7(8):5617–5632

    Article  CAS  Google Scholar 

  12. Mohamed HA, Badrana BM, Rabieb AM, Morsi SMM (2014) Synthesis and characterization of aqueous (polyurethane/aromatic polyamide sulfone) copolymer dispersions from castor oil. Prog Org Coat 77(6):965–974

    Article  CAS  Google Scholar 

  13. Hsu SH, Tang CM, Tseng HJ (2006) Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A 79A(4):759–770

    Article  CAS  Google Scholar 

  14. Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Commun 31(3):247–257

    Article  CAS  Google Scholar 

  15. Hunley MT, Potschke P, Long TE (2009) Melt dispersion and electrospinning of nonfunctionalized multiwalled carbon nanotubes in thermoplastic polyurethane. Macromol Rapid Commun 30(24):2102–2106

    Article  CAS  Google Scholar 

  16. Jana RN, Cho JW (2008) Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubes. J Appl Polym Sci 108(5):2857–2864

    Article  CAS  Google Scholar 

  17. Mu C, Zhang L, Song Y, Chen X, Liu M, Wang F, Hu X (2016) Modification of carbon nanotubes by a novel biomimetic approach towards the enhancement of the mechanical properties of polyurethane. Polymer 92:231–238

    Article  CAS  Google Scholar 

  18. Hsu S, Tseng H-J, Lin Y-C (2010) The biocompatibility and antibacterial properties of waterborne, polyurethane-silver nanocomposites. Biomaterials 31:6796–6808

    Article  CAS  Google Scholar 

  19. Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65:1703e10

    Article  Google Scholar 

  20. Hsu SH, Chou CW, Tseng SM (2004) Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 289(12):1096–1101

    Article  CAS  Google Scholar 

  21. Zhao C-X, Zhang W-D, Mai A-P, Huang X-M, Ouyang YS (2011) Synthesis and characterization of waterborne polyurethane/Cu(II)-loaded hydroxyapatite nanocomposites with antibacterial activity. J Nanosci Nanotechnol 11(8):6779–6787

    Article  CAS  Google Scholar 

  22. Ma Xue-Yong, Zhang Wei-De (2009) Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 94:1103–1109

    Article  CAS  Google Scholar 

  23. Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899–904

    Article  CAS  Google Scholar 

  24. Wu QJ, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692

    Article  CAS  Google Scholar 

  25. Bayer IS, Steele A, Martorana PJ, Loth E (2010) Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions. Appl Surf Sci 257(3):823–826

    Article  CAS  Google Scholar 

  26. Choi HY, Bae CY, Kim BK (2010) Nanoclay reinforced UV curable waterborne polyurethane hybrids. Prog Org Coat 68(4):356–362

    Article  CAS  Google Scholar 

  27. Lee HT, Lin LH (2006) Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39(18):6133–6141

    Article  CAS  Google Scholar 

  28. Datta J, Laski M, Kucinska-Lipka J (2007) The properties of polyurethane elastomers to be used as polymer cores in sandwich plate systems (SPS). Przem Chem 86(1):63–67

    CAS  Google Scholar 

  29. Meng QB, Lee S-I, Nah C, Lee Y-S (2009) Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Prog Org Coat 66:382–386

    Article  CAS  Google Scholar 

  30. Tsou CH, Lee HT, Hung WS, Wang CC, Shu CC, Suen MC, De Guzman M (2016) Synthesis and properties of antibacterial polyurethane with novel bis(3-pyridinemethanol) silver chain extender. Polymer 85:96–105. doi:10.1016/j.polymer.2016.01.042

    Article  CAS  Google Scholar 

  31. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  32. Petrovic ZS, Zavargo Z, Flynn JH, Macknight WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51:1087–1095

    Article  CAS  Google Scholar 

  33. Shubiao Z, Huiming J, Yingmei X, Donghui Z (2007) Thermal and crystalline properties of water-borne polyurethanes based on IPDI, DMPA, and PEBA/HNA. J Appl Polym Sci 103:1936–1941

    Article  Google Scholar 

  34. Lee H-T, Wu S-Y, Jeng R-J (2006) Effects of sulfonated polyol on the properties of the resultant aqueous polyurethane dispersions. Colloids Surf A: Physicochem Eng Asp 276:176–185

    Article  CAS  Google Scholar 

  35. Senthilkumar N, Raghavan A, Sultan Nasar A (2005) Novel metal-containing polyurethane elastomers prepared using tetradentate schiff base metal complexes. Macromol Chem Phys 206:2490–2500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University. The authors express their appreciation to the Green Miracle Technology Co. Ltd, Grabio Greentech Corporation, the Fabric King Textile Co. Ltd, the Ministry of Economic Affairs, and the National Science Council for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maw-Cherng Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsou, CH., Lee, HT., Hung, WS. et al. Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units. Polym. Bull. 74, 1121–1143 (2017). https://doi.org/10.1007/s00289-016-1767-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1767-3

Keywords

Navigation