Skip to main content

Ophthalmology of Invertebrates

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology

Abstract

Invertebrates are an expansive and diverse group of animals that account for over 95% of the living animal species on Earth. In addition to multicellularity, the key distinguishing characteristic of this broad group is the lack of a vertebral column. Invertebrates vary widely in their anatomic structure, complexity, physiology, size, and ecological niches. Classification is traditionally based on characteristics including degree of tissue organization, symmetry, degree of body cavity development, presence of an exoskeleton, and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz AA (1937) The chromatophorotropic hormone of the crustacea: standardization, properties and physiology of the eye-stalk glands. Biol Bull 72(3):344–365

    CAS  Google Scholar 

  • Acosta-Salmón H, Davis M (2007) Inducing relaxation in the queen conch Strombus gigas (L.) for cultured pearl production. Aquaculture 262(1):73–77

    Google Scholar 

  • Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature; Nature. https://doi.org/10.1038/35090573

  • Anderson RC, Wood JB, Byrne RA (2002) Octopus senescence: the beginning of the end. J Appl Anim Welf Sci 5(4):275–283. https://doi.org/10.1207/S15327604JAWS0504_02

    Article  CAS  PubMed  Google Scholar 

  • Andersson A, Nilsson D-E (1981) Fine structure and optical properties of an ostracode (Crustacea) nauplius eye. Protoplasma 107(3–4):361–374

    Google Scholar 

  • Archibald KE, Scott GN, Bailey KM, Harms CA (2019) 2-PHENOXYETHANOL (2-PE) and TRICAINE METHANESULFONATE (MS-222) immersion ANESTHESIA of AMERICAN horseshoe crabs (LIMULUS POLYPHEMUS). J Zoo Wildl Med 50(1):96–106

    PubMed  Google Scholar 

  • Barth FG (2002) The eyes. In: Barth FG (ed) A Spider’s world. Springer / Heidelberg, Berlin, pp 129–143. https://doi.org/10.1007/978-3-662-04899-3_11

    Chapter  Google Scholar 

  • Bertani R, Guadanucci JPL (2013) Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae). Zoologia (Curitiba) 30(4):403–418. https://doi.org/10.1590/S1984-46702013000400006

    Article  Google Scholar 

  • Bever MM, Borgens RB (1988) Eye regeneration in the mystery snail. J Exp Zool 245(1):33–42

    CAS  PubMed  Google Scholar 

  • Bingham J-P, Baker MR, Chun JB (2012) Analysis of a cone snail’s killer cocktail–the milked venom of conus geographus. Toxicon 60(6):1166–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blumer MJ, Salvini-Plawen LV, Kikinger R, Büchinger T (1995) Ocelli in a Cnidaria polyp: the ultrastructure of the pigment spots in Stylocoronella riedli (Scyphozoa, Stauromedusae). Zoomorphology 115(4):221–227

    Google Scholar 

  • Bobkova MV, Gál J, Zhukov VV, Shepeleva IP, Meyer-Rochow VB (2004) Variations in the retinal designs of pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (I). Invertebr Biol 123(2):101–115

    Google Scholar 

  • Breneman JW, Robles LJ, Bok D (1986) Light-activated retinoid transport in cephalopod photoreceptors. Exp Eye Res 42(6):645–658. https://doi.org/10.1016/0014-4835(86)90053-9

    Article  CAS  PubMed  Google Scholar 

  • Budelmann B, Young JZ (1984) The statocyst-oculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor Centre in the central nervous system. Philosophical transactions of the Royal Society of London. B, Biological Sciences 306(1127):159–189

    Google Scholar 

  • Budelmann, & Young. (1993, April 29). The oculomotor system of decapod cephalopods: Eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences; Philos Trans R Soc Lond B Biol Sci. doi:https://doi.org/10.1098/rstb.1993.0051

  • Chase R (2001) Sensory organs and the nervous system. The Biology of Terrestrial Molluscs 1:179–211

    Google Scholar 

  • Choi JTL, Rauf A (2003) Ophthalmia nodosa secondary to tarantula hairs. Eye 17(3):433–434. https://doi.org/10.1038/sj.eye.6700335

    Article  CAS  PubMed  Google Scholar 

  • Clark TR, Nossov PC, Apland JP, Filbert MC (1996) Anesthetic agents for use in the invertebrate sea snail, Aplysia californica. Contemp Top Lab Anim Sci 35(5):75–79

    CAS  PubMed  Google Scholar 

  • Clements T, Colleary C, Baets KD, Vinther J (2017) Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60(1):1–14. https://doi.org/10.1111/pala.12267

    Article  Google Scholar 

  • Clinical Anesthesia and Analgesia in Invertebrates. (2012). Journal of Exotic Pet Medicine, 21(1), 59–70. doi:https://doi.org/10.1053/j.jepm.2011.11.007

  • Cobb CS, Williamson R (1999) Ionic mechanisms of phototransduction in photoreceptor cells from the epistellar body of the octopus Eledone cirrhosa. J Exp Biol 202(8):977–986

    CAS  PubMed  Google Scholar 

  • d’Ovidio D, Monticelli P, Santoro M, Adami C (2019) Immersion anaesthesia with ethanol in African giant land snails (Acathina fulica). Heliyon 5(4):e01546

    PubMed  PubMed Central  Google Scholar 

  • D’aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’aniello A (2005) Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate. Biochem J 386(2):331–340

    PubMed  PubMed Central  Google Scholar 

  • Denton EJ, Warren FJ (1968) Eyes of the Histioteuthidae. Nature 219:400–401. https://doi.org/10.1038/219400a0

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski DS, De Voe RS, Lewbart GA (2013) Comparison of isoflurane and carbon dioxide Anesthesia in C hilean rose tarantulas (G rammostola rosea). Zoo Biol 32(1):101–103

    CAS  PubMed  Google Scholar 

  • Eakin RM (1965) Evolution of photoreceptors. Cold Spring Harb Symp Quant Biol 30:363–370

    CAS  PubMed  Google Scholar 

  • Emery DG (1992) Fine structure of olfactory epithelia of gastropod molluscs. Microsc Res Tech 22(4):307–324

    CAS  PubMed  Google Scholar 

  • Exner S (1988) The physiology of the compound eyes of insects and crustaceans: a study. Springer-Verlag, London

    Google Scholar 

  • Flores DV, Salas PJ, Vedra JPS (1983) Electroretinographic and ultrastructural study of the regenerated eye of the snail Cryptomphallus aspersa. J Neurobiol 14(3):167–176

    CAS  PubMed  Google Scholar 

  • Gál J, Bobkova MV, Zhukov VV, Shepeleva IP, Meyer-Rochow VB (2004) Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (II). Invertebr Biol 123(2):116–127

    Google Scholar 

  • García-Robledo C, Kuprewicz EK, Baer CS, Clifton E, Hernández GG, Wagner DL (2020) The Erwin equation of biodiversity: from little steps to quantum leaps in the discovery of tropical insect diversity. Biotropica 52(4):590–597. https://doi.org/10.1111/btp.12811

    Article  Google Scholar 

  • Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48(8–9):707–717

    PubMed  Google Scholar 

  • Gillary HL (1972) REGENERATING EYE OF STROMBUST-ANATOMY AND ELECTROPHYSIOLOGY. Am Zool 12(4):691–691

    Google Scholar 

  • Gillary HL, Gillary EW (1979) Ultrastructural features of the retina and optic nerve of Strombus luhuanus, a marine gastropod. J Morphol 159(1):89–115

    PubMed  Google Scholar 

  • Girdlestone D, Cruickshank SG, Winlow W (1989) The actions of three volatile general anaesthetics on withdrawal responses of the pond-snail Lymnaea stagnalis (L.). comparative biochemistry and physiology. C, Comparative Pharmacology and Toxicology 92(1):39–43

    CAS  PubMed  Google Scholar 

  • Gjeltema J, Posner LP, Stoskopf M (2014) The use of injectable alphaxalone as a single agent and in combination with ketamine, xylazine, and morphine in the Chilean rose tarantula, Grammostola rosea. J Zoo Wildl Med 45(4):792–801

    PubMed  Google Scholar 

  • Glockauer A (1915) Zur Anatomie und Histologie des Cephalopodenauges. Z Wiss Zool 113:325–360

    Google Scholar 

  • Gore SR, Harms CA, Kukanich B, Forsythe J, Lewbart GA, Papich MG (2005) Enrofloxacin pharmacokinetics in the European cuttlefish, Sepia officinalis, after a single i.v. injection and bath administration. J Vet Pharmacol Ther 28(5):433–439. https://doi.org/10.1111/j.1365-2885.2005.00684.x

    Article  CAS  PubMed  Google Scholar 

  • Hanke FD, Kelber A (2020) The eye of the common octopus (Octopus vulgaris). Front Physiol 10. https://doi.org/10.3389/fphys.2019.01637

  • Hara T, Hara R (1967) Vision in octopus and squid: rhodopsin and Retinochrome in the squid retina. Nature 214(5088):573–575

    CAS  PubMed  Google Scholar 

  • Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Handbook of sensory physiology volume VII/1. Photochemistry of vision. Heidelberg; Springer-Verlag, Berlin; New York, pp 720–746

    Google Scholar 

  • Hariyama T, MEYER-ROCHOW VB, EGUCHI E (1986) Diurnal changes in structure and function of the compound eye of Ligia exotica (Crustacea, isopoda). J Exp Biol 123(1):1–26

    Google Scholar 

  • Harms CA, Lewbart GA, McAlarney R, Christian LS, Geissler K, Lemons C (2006) Surgical excision of mycotic (Cladosporium sp.) granulomas from the mantle of a cuttlefish (Sepia officinalis). J Zoo Wildl Med 37(4):524–530

    PubMed  Google Scholar 

  • Harzsch S, Vilpoux K, Blackburn DC, Platchetzki D, Brown NL, Melzer R, Kempler KE, Battelle BA (2006) Evolution of arthropod visual systems: development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Dev Dyn 235(10):2641–2655

    CAS  PubMed  Google Scholar 

  • Hilig H (1912) Das Nervensystem von Sepia officinalis. Z Wiss Zool 101:736–806

    Google Scholar 

  • Hughes HP (1976) Structure and regeneration of the eyes of strombid gastropods. Cell Tissue Res 171(2):259–271

    CAS  PubMed  Google Scholar 

  • Isbister, G. K., & Bawaskar, H. S. (2014, July 30). Scorpion Envenomation (world) [Review-article]. doi:https://doi.org/10.1056/NEJMra1401108; Massachusetts Medical Society. doi:https://doi.org/10.1056/NEJMra1401108

  • Jackson RR, Harland DP (2009) One small leap for the jumping spider but a giant step for vision science. J Exp Biol 212(14):2129–2132. https://doi.org/10.1242/jeb.022830

    Article  PubMed  Google Scholar 

  • Jones C, Nolte J, Brown J (1971) The anatomy of the median ocellus of Limulus. Z Zellforsch Mikrosk Anat 118(3):297–309

    CAS  PubMed  Google Scholar 

  • Kingston AC, Kuzirian AM, Hanlon RT, Cronin TW (2015) Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception. J Exp Biol 218(10):1596–1602

    PubMed  Google Scholar 

  • Land MF, Marshall JN, Brownless D, Cronin TW (1990) The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J Comp Physiol A 167(2):155–166

    Google Scholar 

  • Land MF (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod Crustacea. Nature 263(5580):764–765

    CAS  PubMed  Google Scholar 

  • Land MF (2018) Eyes to see: the astonishing variety of vision in nature (first edition.). Oxford University Press; WorldCat.org, Oxford

    Google Scholar 

  • Lazareva OF, Shimizu T, Wasserman EA (2012) How animals see the WorldComparative behavior, biology, and evolution of vision. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780195334654.001.0001

    Book  Google Scholar 

  • Lewbart, G. A. (2011). Invertebrate Medicine. Wiley. https://books.google.com/books?id=rtoVu3JJ7-oC

  • Lewbart GA (2022) Invertebrate medicine. Wiley

    Google Scholar 

  • Lindström M (2000) Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J Exp Mar Biol Ecol 246(1):85–101

    PubMed  Google Scholar 

  • Liou GI, Bridges C, Fong S-L, Alvarez R, Gonzalez-Fernandez F (1982) Vitamin a transport between retina and pigment epithelium—an interstitial protein carrying endogenous retinol (interstitial retinol-binding protein). Vis Res 22(12):1457–1467

    CAS  PubMed  Google Scholar 

  • Littlewood DTJ (2008) Platyhelminth systematics and the emergence of new characters. Parasite 15(3):333–341

    CAS  PubMed  Google Scholar 

  • Lowe EK, Garm AL, Ullrich-Lüter E, Cuomo C, Arnone MI (2018) The crowns have eyes: multiple opsins found in the eyes of the crown-of-thorns starfish Acanthaster planci. BMC Evol Biol 18:168. https://doi.org/10.1186/s12862-018-1276-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarized light. Philos Trans R Soc Lond Ser B Biol Sci 334(1269):33–56

    Google Scholar 

  • Meyer-Rochow VB (1987) Aspects of the functional anatomy of the eyes of the whip-scorpion Thelyphonus caudatus (Chelicerata: Arachnida) and a discussion of their putative performance as photoreceptors. J R Soc N Z 17(3):325–341. https://doi.org/10.1080/03036758.1987.10418165

    Article  Google Scholar 

  • Nakanishi N, Hartenstein V, Jacobs DK (2009) Development of the rhopalial nervous system in Aurelia sp. 1 (Cnidaria, Scyphozoa). Dev Genes Evol 219(6):301–317

    PubMed  PubMed Central  Google Scholar 

  • Nilsson D-E (2013) Eye evolution and its functional basis. Vis Neurosci 30(1–2):5–20. https://doi.org/10.1017/S0952523813000035

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobel Media AB 2020. (n.d.). The Nobel Prize in Physiology or Medicine 2000. Retrieved January 17, 2020, from https://www.nobelprize.org/prizes/medicine/2000/summary/

  • Noble WJ, Cocks RR, Harris JO, Benkendorff K (2009) Application of anaesthetics for sex identification and bioactive compound recovery from wild Dicathais Orbita. J Exp Mar Biol Ecol 380(1–2):53–60

    CAS  Google Scholar 

  • Peptide therapeutics from venom: Current status and potential | Elsevier Enhanced Reader. (n.d.). doi:https://doi.org/10.1016/j.bmc.2017.09.029

  • Philippe H, Brinkmann H, Copley R (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polese G, Winlow W, Di Cosmo A (2014) Dose-dependent effects of the clinical Anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare. J Aquat Anim Health 26(4):285–294. https://doi.org/10.1080/08997659.2014.945047

    Article  CAS  PubMed  Google Scholar 

  • Purschke G, Arendt D, Hausen H, Müller MC (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35(4):211–230

    PubMed  Google Scholar 

  • Purschke G, Bleidorn C, Struck T (2014) Systematics, evolution and phylogeny of Annelida–a morphological perspective. Mem Museum Victoria 71:247–269

    Google Scholar 

  • Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, De Jong P, Weissenbach J (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310(5752):1325–1326

    CAS  PubMed  Google Scholar 

  • Ramirez MD, Oakley TH (2015) Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J Exp Biol 218(10):1513–1520

    PubMed  PubMed Central  Google Scholar 

  • Randel N, Jékely G (2016) Phototaxis and the origin of visual eyes. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1685):20150042

    Google Scholar 

  • Redmond JR (2010) Respiratory physiology. Nautilus 1:305–312. https://doi.org/10.1007/978-90-481-3299-7_21

    Article  Google Scholar 

  • Reed Z, Doering C, Barrett PM (2016) Tarantula hair keratoconjunctivitis with concurrent fungal infection in a rat terrier. J Am Anim Hosp Assoc 52(6):392–397

    PubMed  Google Scholar 

  • Robinson SD, Safavi-Hemami H (2017) Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology 127:79–86. https://doi.org/10.1016/j.neuropharm.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  • Roumbedakis K, Alexandre MN, Puch JA, Martins ML, Pascual C, Rosas C (2020) Short and long-term effects of Anesthesia in Octopus maya (Cephalopoda, Octopodidae) juveniles. Front Physiol 11:697. https://doi.org/10.3389/fphys.2020.00697

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppert, E. E., Barnes, R. D., & Fox, R. S. (2004). Invertebrate zoology: A functional evolutionary approach

    Google Scholar 

  • Schönenberger N (1977) The fine structure of the compound eye of Squilla mantis (Crustacea, Stomatopoda). Cell Tissue Res 176(2):205–233

    PubMed  Google Scholar 

  • Schwab IR (2011) Evolution’s witness: How eyes evolved. Oxford University Press, Oxford

    Google Scholar 

  • Serb JM (2008) Toward developing models to study the disease, ecology, and evolution of the eye in Mollusca. Am Malacol Bull 26(1/2):3–18

    Google Scholar 

  • Serb JM, Eernisse DJ (2008) Charting evolution’s trajectory: using molluscan eye diversity to understand parallel and convergent evolution. Evolution: Education and Outreach 1(4):439–447

    Google Scholar 

  • Sheth, H. G., Pacheco, P., Sallam, A., & Lightman, S. (2009, December 16). Pole to Pole Intraocular Transit of Tarantula Hairs—An Intriguing Cause of Red Eye [Case Report]. Case Reports in Medicine; Hindawi. doi:https://doi.org/10.1155/2009/159097

  • Sluys R (2019) The evolutionary terrestrialization of planarian flatworms (Platyhelminthes, Tricladida, Geoplanidae): a review and research programme. Zoosystematics and Evolution 95:543

    Google Scholar 

  • Smith PT (2000) Diseases of the eye of farmed shrimp Penaeus monodon. Dis Aquat Org 43(3):159–173

    CAS  Google Scholar 

  • Stubbs AL, Stubbs CW (2016) Spectral discrimination in color blind animals via chromatic aberration and pupil shape. Proceedings of the National Academy of Science USA 113:8206–8211

    CAS  Google Scholar 

  • Taba A, Quezada BH, Robles LJ (1989) Microscopic and biochemical characterization of lectin binding sites in the cephalopod retina. J Comp Neurol 283(4):559–567

    CAS  PubMed  Google Scholar 

  • Temple SE, Pignatelli V, Cook T, How MJ, Chiou T-H, Roberts NW, Marshall NJ (2012) High-resolution polarisation vision in a cuttlefish. Curr Biol 22(4):R121–R122

    CAS  PubMed  Google Scholar 

  • Thore S (1939) Beitrage zur Kenntnis der vergleichenden Anotomic des zentralen Nvervensystems der dibranchiaten Cephalopoden. Publ Staz Zool Napoli 17:313–506

    Google Scholar 

  • Tinker-Kulberg R, Dellinger K, Brady TE, Robertson L, Levy JH, Abood SK, LaDuca FM, Kepley CL, Dellinger AL (2020) Horseshoe crab aquaculture as a sustainable endotoxin testing source. Front Mar Sci 7:153. https://doi.org/10.3389/fmars.2020.00153

    Article  Google Scholar 

  • Tyler, S., Schilling, S., Hooge, M., et al. (2006-2016). Turbellarian taxonomic database. Version 1.7. Retrieved July 21, 2020, from http://turbellaria.umaine.edu

  • Visigalli G (2004) Guide to hemolymph transfusion in giant spiders. Exotic DVM Vet Mag 5:42–43

    Google Scholar 

  • Wells MJ (2013) Octopus: physiology and behaviour of an advanced invertebrate. Springer Science & Business Media, London

    Google Scholar 

  • Willekens B, Vrensen G, Jacob T, Duncan G (1984) The ultrastructure of the lens of the cephalopod Sepiola: a scanning electron microscopic study. Tissue Cell 16(6):941–950

    CAS  PubMed  Google Scholar 

  • Williams DS, MeIntyre P (1980) The principal eyes of a jumping spider have a telephoto component. Nature 288(5791):578–580. https://doi.org/10.1038/288578a0

    Article  Google Scholar 

  • Woodall AJ, Naruo H, Prince DJ, Feng ZP, Winlow W, Takasaki M, Syed NI (2003) Anesthetic treatment blocks synaptogenesis but not neuronal regeneration of cultured Lymnaea neurons. J Neurophysiol 90(4):2232–2239

    PubMed  Google Scholar 

  • Yang H, Zhao Y, Song W, Ye Y, Wang C, Mu C, Li R (2020) Evaluation of the efficacy of potential anesthetic agents on cuttlefish (Sepia pharaonis) juveniles. Aquaculture Reports 18:100524. https://doi.org/10.1016/j.aqrep.2020.100524

    Article  Google Scholar 

  • Young JZ (1962) The retina of cephalopods and its degeneration after optic nerve section. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 245(718):1–18

    Google Scholar 

  • Zachariah, T. T., Mitchell, M. A., Watson, M. K., Clark-Price, S. C., & McMichael, M. A. (2014, May 27). Effects of sevoflurane anesthesia on righting reflex and hemolymph gas analysis variables for Chilean rose tarantulas (Grammostola rosea) (1931 North Meacham Road, Suite 100, Schaumburg, IL 60173–4360 USA 847–925-8070 847–925-1329 avmajournals@avma.org) [Research-article]. doi:https://doi.org/10.2460/Ajvr.75.6.521; American Veterinary Medical Association 1931 North Meacham Road, Suite 100, Schaumburg, IL 60173–4360 USA 847–925-8070 847–925-1329 avmajournals@avma.org. doi:https://doi.org/10.2460/ajvr.75.6.521

  • Zieger MV, Meyer-Rochow VB (2008) Understanding the cephalic eyes of pulmonate gastropods: a review. Am Malacol Bull 26(1/2):47–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenessa L. Gjeltema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gjeltema, J.L., Freeman, K.S., Lewbart, G.A. (2022). Ophthalmology of Invertebrates. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_2

Download citation

Publish with us

Policies and ethics