Skip to main content

Ophthalmology of Eulipotyphla: Moles, Shrews, Hedgehogs, and Relatives

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology
  • 1234 Accesses

Abstract

Eulipotyphla is one of the newest orders of animals of the Mammalia class with some of the oldest and most primitive placental mammals. This order includes the families Solenodontidae, Talpidae, Soricidae, Erinaceidae, and the extinct Nesophontidae or West Indian shrews. Accounting for approximately 8–10% of all placental mammals and including more than 500 species worldwide, Eulipotyphla is a very pervasive order with species found on all continents except Antarctica (Woodman 2018). By definition, Eulipotyphla means “truly fat and blind”. As this nomenclature suggests, most species have small eyes and poor vision. With minimal change over millions of years, these species provide a powerful model to study evolutionary adaption and the progression or regression of anatomic and physiologic properties. The peer-reviewed literature citing ophthalmic disease in this order of mammals is sparse to non-existent with the exception of some members of the Erinaceidae family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowdich T (1821) An analysis of the natural classifications of Mammalia for the use of students and Travellers. J. Smith, Paris

    Google Scholar 

  • Branis M (1979) Morphology of the eye of shrews (Soricidae, Insectivora). Acta Univ Carolinae-Biol:409–445

    Google Scholar 

  • Branis M, Burda H (1994) Visual and hearing biology of shrews. Carnegie Mus Nat Hist 18:189–200

    Google Scholar 

  • Brown R, Robinson P (2004) Melanopsin—shedding light on the elusive circadian photopigment. Chronobiol Int 21:189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchler E (1976) The use of echolocation by the wandering shrew (Sorex vagrans). Anim Behav 24:858–873

    Article  Google Scholar 

  • Carmona F, Jimenez R, Collinson J (2008) The molecular basis of defective lens development in the Iberian mole. BMC Biol 6:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmona F, Glösmann M, Ou J et al (2010a) Retinal development and function in a ‘blind’ mole. Proc Biol Sci 277:1513–1522

    PubMed  Google Scholar 

  • Carmona F, Ou J, Jiménez R et al (2010b) Development of the cornea of true moles (Talpidae): morphogenesis and expression of PAX6 and cytokeratins. J Anat 217:488–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho L, Cowing J, Wilkie S et al (2007) The molecular evolution of avian ultraviolet and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Catania K, Lyon D, Mock O et al (1999) Cortical organization in shrews: evidence from five species. J Comp Neurol 410:55–72

    Article  CAS  PubMed  Google Scholar 

  • Churchfield S (1990) The natural history of shrews. Comstock Publishing Associates, Ithaca, NY, p 1–21, 81–86111

    Google Scholar 

  • Cvekl A, Piatigorsky J (1996) Lens development and crystallin gene expression: many roles for Pax-6. BioEssays 18:621–630

    Article  CAS  PubMed  Google Scholar 

  • Derbridge J, Posthumus E, Chen H, et al (2015) Solenodon paradoxus (Soricomorpha: Solenodontidae). Mamm Species 47:100–106

    Google Scholar 

  • Dinopoulos A, Karamanlidis A, Michaloudi H et al (1987) Retinal projections in the hedgehog (Erinaceus europaeus). An autoradiographic and horseradish peroxidase study. Anat Embryol 176:65–70

    Article  CAS  Google Scholar 

  • Duke-Elder S (1958) The eye in evolution, vol 1. Henry Kimpton, London, p 481,491

    Google Scholar 

  • Eisnberg J, Gould E (1966) Behavior of Solenodon paradoxus in captivity with comments on behavior of other insectivore. Zoologica 51:49–57

    Google Scholar 

  • Fukuzawa R, Fukuzawa K, Abe H et al (2004) Acinic cell carcinoma in an African pygmy hedgehog (Atelerix albiventrix). Vet Clin Pathol 33:39–42

    Article  PubMed  Google Scholar 

  • Gardhouse S, Eshar D (2015) Retrospective study of disease occurrence in captive African pygmy hedgehogs (Atelerix albiventris). Israel J Vet Med 70:32–36

    Google Scholar 

  • Ghaffari M, Hajikhani R, Sahebjam F et al (2012) Intraocular pressure and Schirmer tear test results in clinically normal long-eared hedgehogs (Hemiechinus auritus): reference values. Vet Ophthalmol 15:206–209

    Article  PubMed  Google Scholar 

  • Glösmann M, Steiner M, Peichl L et al (2008) Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J Vis 8:1–12

    Article  Google Scholar 

  • Gould E, Negus N, Novick. (1964) Evidence for echolocation in shrews. J Exp Zool 156:19–37

    Article  CAS  PubMed  Google Scholar 

  • Gregory W (1910) The orders of mammalia. Bull Am Mus Nat Hist 27:1–524

    Google Scholar 

  • Grindley J, Davidson D, Hill R (1995) The role of Pax-6 in eye and nasal development. Development 121:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Gruppe B (2010) Talpidae: Euroscaptor, Scapanus, Scalopus Aquaticus, Mogera, Neurotrichus Gibbsii, Talpa Europaea, Talpini, Urotrichini. Books LLC, Prasca

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, vol 2. Georg Reimer, Berlin

    Google Scholar 

  • Hamlen H (1997) Retro-orbital blood collection in the African hedgehog (Atelerix albiventris). Lab Anim 26:34–35

    Google Scholar 

  • Harper J, Samuelson D, Reep R (2005) Corneal vascularization in the Florida manatee (Trichechus manatus latirostris) and three-dimensional reconstruction of vessels. Vet Ophthalmol 8:89–99

    Article  PubMed  Google Scholar 

  • Hattar S, Liao H, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Bazan N, Bazan H (2010) Mapping the entire human corneal nerve architecture. Exp Eye Res 91:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He K, Chen J, Gould G et al (2012) An estimation of erinaceidae phylogeny: a combined analysis approach. PLoS One 7:39304

    Article  Google Scholar 

  • Hoefer HL (1994) Hedgehogs. Vet Clin North Am Small Anim Pract 24(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Jiménez R, Burgos M, Sánchez A et al (1990) The reproductive cycle of Talpa occidentalis in the southeastern Iberian Peninsula. Acta Theriol 35:165–169

    Article  Google Scholar 

  • Johannesson-Gross K (1988) Brightness discrimination of the mole (Talpa europaea) in learning experiments applying a modified tube-maze method. Zeitschrift für Säugetierkunde 53:193–201

    Google Scholar 

  • Johnson G (1900) Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Philos Trans R Soc B 194:1–82

    Google Scholar 

  • Kaas J, Hall W, Diamond I (1970) Cortical visual area I and II in the hedgehog: the relation between evoked potential maps and architectonic subdivisions. J Neurophysiol 33:273–306

    Article  Google Scholar 

  • Kennerley R, Nicoll M, Butler S et al (2019) Home range and habitat data for Hispaniolan mammals challenge assumptions for conservation management. Glob Ecol Conser 18:1–10

    Google Scholar 

  • Kim J, Lee E, Chang B et al (2005) The presence of megamitochondria in the ellipsoid of photoreceptor inner segment of the zebrafish retina. Anat Histol Embryol 34:339–342

    Article  CAS  PubMed  Google Scholar 

  • Kita M, Nakamura Y, Okumura Y et al (2004) Blarina toxin, a mammalian lethal venom from the short-tailed shrew Blarina brevicauda: isolation and characterization. Proc Natl Acad Sci U S A 10:7542–7547

    Article  Google Scholar 

  • Knabe W, Kuhn H (1996) Morphogenesis of megamitochondria in the retinal cone inner segments of Typaia belangeri (Scandentia). Cell Tissue Res 285:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kuonen V, Wilkie D, Morreale R et al (2002) Unilateral exophthalmia in a European hedgehog (Erinaceus europaeus) caused by a lacrimal ductal carcinoma. Vet Ophthalmol 5:161–165

    Article  PubMed  Google Scholar 

  • Leitch D, Sarko D, Catania K (2014) Brain mass and cranial nerve size in shrews and moles. Sci Rep 4:6241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lluch S, López-Fuster M, Ventura J (2002) Giant mitochondria in the retina cone inner segments of shrews of genus Sorex (Insectivora, Soricidae). Anat Rec 272:484–490

    Google Scholar 

  • Lluch S, López-Fuster M, Ventura J (2009) Cornea, retina, and lens morphology in five Soricidae species (Soricomorpha: Mammalia). Anat Sci Int 84:312–322

    Article  PubMed  Google Scholar 

  • Lund R, Lund J (1965) The visual system of the mole, Talpa europaea. Exp Neurol 13:302–316

    Article  CAS  PubMed  Google Scholar 

  • Marfurt C, Murphy C, Florczak J (2001) Morphology and neurochemistry of canine corneal innervation. Invest Ophthalmol Vis Sci 42:2242–2251

    CAS  PubMed  Google Scholar 

  • Novacek M (1986) The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull Am Mus Nat Hist 183:1–111

    Google Scholar 

  • Nowak R (1999) Insectivores, in Walker’s mammals of the world, vol 1, 6th edn. The Johns Hopkins University Press, Baltimore, pp 169–229

    Book  Google Scholar 

  • Ottenwalder J (2001) Systematics and biogeography of the west Indian genus Solenodon. In: Woods CA, Sergile FE (eds) Biogeography of the West Indies: patterns and perspectives. CRC Press, Boca Raton, FL, pp 253–329

    Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol 287:1001–1012

    Article  PubMed  Google Scholar 

  • Peichl L, Künzle H, Vogel P (2000) Photoreceptor types and distributions in the retinae of insectivores. Vis Neurosci 17:937–948

    Article  CAS  PubMed  Google Scholar 

  • Quilliam T (1966) The problem of vision in the ecology of Talpa europaea. Exp Eye Res 5:63–78

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Ohdachi S, Kawahara A et al (2019) Acoustic emissions of Sorex unguiculatus (Mammalia: Soricidae): assessing the echo-based orientation hypothesis. Ecol Evol 9:2629–2639

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan H, Baron G, Frahm H (1991) Insectivora. With a stereotaxic atlas of the hedgehog brain. In: Comparative brain research in mammals, vol 1. Springer, New York, pp 219–224

    Google Scholar 

  • Tomasi T (1979) Echolocation by the short-tailed shrew Blarina brevicauda. J Mammal 60:751–759

    Article  Google Scholar 

  • Turner P, Brash M, Smith D (2017) Hedgehogs. In: Pathology of small mammal pets, 1st edn. Wiley Blackwell, pp 387–403

    Chapter  Google Scholar 

  • Turvey S, Meredith H, Scofield R (2008) Continued survival of Hispaniolan solenodon paradoxus in Haiti. Oryx 42:611–614

    Article  Google Scholar 

  • Tusques J (1954) Effect of thyroxin on the palpebral opening and on development of the ocular globe in Talpa europaea. C R Hebd Seances Acad Sci 238:2562–2564

    CAS  PubMed  Google Scholar 

  • Tyrrell L, Teixeira L, Dubielzig R et al (2019) A novel cellular structure in the retina of insectivorous birds. Sci Rep 9:15230

    Article  PubMed  PubMed Central  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wheler C, Grahn B, Pocknell A (2001) Unilateral proptosis and orbital cellulitis in eight African hedgehogs (Atelerix albiventris). J Zoo Wildl Med 32:236–241

    Article  CAS  PubMed  Google Scholar 

  • Wible J (2008) On the cranial osteology of the Hispaniolan solenodon, Solenodon paradoxus Brandt, 1833 (Mammalia, Lipotyphla, Solenodontidae). Ann Carnegie Museum 77:321–402

    Article  Google Scholar 

  • Williams D, Adeyeye N, Visser E (2017) Ophthalmological abnormalities in wild European hedgehogs (Erinaceus europaeus): a survey of 300 animals. Open Vet J 7:261–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodman N (2018) American recent Eulipotyphla: Nesophontids, Solenodons, moles, and shrews in the New World. In: Smithsonian contributions to zoology. Number 650. Smithsonian Institution Scholarly Press, Washington, DC, pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holmberg, B.J. (2022). Ophthalmology of Eulipotyphla: Moles, Shrews, Hedgehogs, and Relatives. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-81273-7_16

Download citation

Publish with us

Policies and ethics