Skip to main content

The Life-Long Consequences of Prenatal and Childhood Stress on the Innate and Adaptive Immune System

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

The immune system is composed of the innate and adaptive arms, which follow different developmental trajectories. During the maturation period, which spans from infancy up until adolescence, the immune system is sensitive to stress, a phenomenon that may be relevant to the aetiology of psychiatric disorders, particularly depression and anxiety. Since the immunomodulatory effects of stress also affect organs critical to the maturation of immune cells, we gathered evidence on the consequences of prenatal and childhood stress on the innate and adaptive immune systems and compared them accounting for age-dependent changes. Prenatal stress was most associated with elevated acute immune response cytokine interleukin (IL)-8 at birth and with IL-6, IL-1β and tumour necrosis factor (TNF)-α later in life. It also increased the production of T helper (Th) 2 lymphocytes-associated cytokines IL-4, IL-5 and IL-13. Regarding childhood stress, IL-6 was generally increased and changes in C-reactive protein (CRP) were detected after childhood trauma most consistently in the middle-aged and elderly populations. The adaptive immune system showed a dampened activity, marked by T lymphocyte senescence and lower adaptive cytokines levels. This demonstrates the influence of stress on both the innate and adaptive immune systems and highlights variations of specific molecules across the lifespan depending on when the stressor occurred during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374–81.

    Article  CAS  PubMed  Google Scholar 

  2. Horowitz MA, Zunszain PA, Anacker C, Musaelyan K, Pariante CM. Glucocorticoids and inflammation: a double-headed sword in depression? How do neuroendocrine and inflammatory pathways interact during stress to contribute to the pathogenesis of depression? Mod Trends Pharmacopsychiatry. Switzerland. 2013;28:127–43.

    Article  CAS  Google Scholar 

  3. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. Netherlands. 2017;27:554–9.

    Article  CAS  Google Scholar 

  4. Carroll JE, Low CA, Prather AA, Cohen S, Fury JM, Ross DC, et al. Negative affective responses to a speech task predict changes in interleukin (IL)-6. Brain Behav Immun. Netherlands. 2011;25:232–8.

    Article  CAS  Google Scholar 

  5. Yamakawa K, Matsunaga M, Isowa T, Kimura K, Kasugai K, Yoneda M, et al. Transient responses of inflammatory cytokines in acute stress. Biol Psychol. Elsevier. 2009;82:25–32.

    Article  Google Scholar 

  6. Slavich GM, Cole SW. The emerging field of human social genomics. Clin Psychol Sci A. J Assoc Psychol Sci. United States. 2013;1:331–48.

    Google Scholar 

  7. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38:145–57.

    Article  CAS  PubMed  Google Scholar 

  8. Katayama Y, Battista M, Kao W-M, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. United States. 2006;124:407–21.

    CAS  Google Scholar 

  9. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511.

    Article  CAS  PubMed  Google Scholar 

  10. Trottier MD, Newsted MM, King LE, Fraker PJ. Natural glucocorticoids induce expansion of all developmental stages of murine bone marrow granulocytes without inhibiting function. Proc Natl Acad Sci U S A. United States. 2008;105:2028–33.

    Article  CAS  Google Scholar 

  11. Delves PJ, Roitt IM. The immune system. N Engl J Med. Massachusetts Medical Society. 2000;343:37–49.

    Article  CAS  Google Scholar 

  12. Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. United States. 2009;183:7150–60.

    CAS  Google Scholar 

  13. Yerkovich ST, Wikstrom ME, Suriyaarachchi D, Prescott SL, Upham JW, Holt PG. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide. Pediatr Res. United States. 2007;62:547–52.

    Article  CAS  Google Scholar 

  14. Martin R, Nauta AJ, Ben Amor K, Knippels LMJ, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010;1:367–82.

    Article  CAS  PubMed  Google Scholar 

  15. Ygberg S, Nilsson A. The developing immune system—From foetus to toddler. Acta Paediatr Int J Paediatr. 2012;101:120–7.

    Article  CAS  Google Scholar 

  16. Di Benedetto MG, Bottanelli C, Cattaneo A, Pariante CM, Borsini A. Nutritional and immunological factors in breast milk: a role in the intergenerational transmission from maternal psychopathology to child development. Brain Behav Immun. Academic Press. 2020;85:57–68.

    Article  CAS  Google Scholar 

  17. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. United States. 2009;12:342–8.

    Article  CAS  Google Scholar 

  18. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100:1920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Juruena MF, Cleare AJ, Papadopoulos AS, Poon L, Lightman S, Pariante CM. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl). Germany. 2006;189:225–35.

    Article  CAS  Google Scholar 

  20. Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, Su K-P, et al. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav Immun. 2017;65:230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borsini A, Cattaneo A, Malpighi C, Thuret S, Harrison NA, Zunszain PA, et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. Int J Neuropsychopharmacol. England. 2018;21:187–200.

    Article  CAS  Google Scholar 

  22. Innes S, Pariante CM, Borsini A. Microglial-driven changes in synaptic plasticity: a possible role in major depressive disorder. Psychoneuroendocrinology. Elsevier. 2018;102:236–47.

    Article  CAS  Google Scholar 

  23. Nettis MA, Pariante CM, Mondelli V. Early-life adversity, systemic inflammation and comorbid physical and psychiatric illnesses of adult life. Curr Top Behav Neurosci. Germany. 2020;44:207–25.

    Article  CAS  Google Scholar 

  24. Plant DT, Pawlby S, Pariante CM, Jones FW. When one childhood meets another—maternal childhood trauma and offspring child psychopathology: a systematic review. Clin Child Psychol Psychiatry. England. 2018;23:483–500.

    Article  Google Scholar 

  25. Cullen AE, Fisher HL, Roberts RE, Pariante CM, Laurens KR. Daily stressors and negative life events in children at elevated risk of developing schizophrenia. Br J Psychiatry. England. 2014;204:354–60.

    Article  Google Scholar 

  26. Huh HJ, Kim KH, Lee H-K, Chae J-H. The relationship between childhood trauma and the severity of adulthood depression and anxiety symptoms in a clinical sample: the mediating role of cognitive emotion regulation strategies. J Affect Disord. Netherlands. 2017;213:44–50.

    Article  Google Scholar 

  27. Salari A-A, Fatehi-Gharehlar L, Motayagheni N, Homberg JR. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav Brain Res. Netherlands. 2016;311:354–67.

    Article  CAS  Google Scholar 

  28. Ouellet-Morin I, Wong CCY, Danese A, Pariante CM, Papadopoulos AS, Mill J, et al. Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol Med. Cambridge University Press. 2013;43:1813–23.

    CAS  Google Scholar 

  29. Pawlby S, Hay D, Sharp D, Waters CS, Pariante CM. Antenatal depression and offspring psychopathology: the influence of childhood maltreatment. Br J Psychiatry. England. 2011;199:106–12.

    Article  Google Scholar 

  30. Plant DT, Pawlby S, Sharp D, Zunszain PA, Pariante CM. Prenatal maternal depression is associated with offspring inflammation at 25 years: a prospective longitudinal cohort study. Transl Psychiatry. United States. 2016;6:e936.

    Article  CAS  Google Scholar 

  31. Osborne S, Biaggi A, Chua TE, Du Preez A, Hazelgrove K, Nikkheslat N, et al. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood—Depression (PRAM-D) Study. Psychoneuroendocrinology. England. 2018;98:211–21.

    Article  CAS  Google Scholar 

  32. Baumeister D, Russell A, Pariante CM, Mondelli V. Inflammatory biomarker profiles of mental disorders and their relation to clinical, social and lifestyle factors. Soc Psychiatry Psychiatr Epidemiol. 2014;49:841–9.

    Article  PubMed  Google Scholar 

  33. Liles WC, Review VVWC. Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J Infect Dis. 1995;172:1573–80.

    Article  CAS  PubMed  Google Scholar 

  34. Owen JA, Punt J, Stranford SA, Jones PP. Receptors and signaling: cytokines and chemokines. Kuby Immunol: W.H. Freeman; 2013. p. 113.

    Google Scholar 

  35. Andersson NW, Li Q, Mills CW, Ly J, Nomura Y, Chen J. Influence of prenatal maternal stress on umbilical cord blood cytokine levels. Arch Womens Ment Health. 2016;19:761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wright RJ, Visness CM, Calatroni A, Grayson MH, Gold DR, Sandel MT, et al. Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med. 2010;182:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu S, Gennings C, Wright RJ, Wilson A, Burris HH, Just AC, et al. Prenatal stress, methylation in inflammation-related genes, and adiposity measures in early childhood: the programming research in obesity, growth environment and social stress cohort study. Psychosom Med. 2018;80:34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogl SE, Worda C, Egarter C, Bieglmayer C, Szekeres T, Huber J, et al. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG. England. 2006;113:441–5.

    Article  CAS  Google Scholar 

  39. Duijts L, Bakker-Jonges LE, Labout JAM, Jaddoe VWV, Hofman A, Steegers EAP, et al. Perinatal stress influences lymphocyte subset counts in neonates. The generation R study. Pediatr Res. United States. 2008;63:292–8.

    Article  Google Scholar 

  40. O’Connor TG, Winter MA, Hunn J, Carnahan J, Pressman EK, Glover V, et al. Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav Immun. Elsevier Inc. 2013;32:21–8.

    Article  CAS  Google Scholar 

  41. Brunwasser SM, Slavich GM, Newcomb DC, Gebretsadik T, Turi KN, Stone C, et al. Sex-specific association between prenatal life stress exposure and infant pro-inflammatory cytokine levels during acute respiratory infection. Brain Behav Immun. Elsevier. 2019;76:275–9.

    Article  CAS  Google Scholar 

  42. Veru F, Dancause K, Laplante DP, King S, Luheshi G. Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: Project Ice Storm. Physiol Behav. Elsevier B.V. 2015;144:137–45.

    CAS  Google Scholar 

  43. Slopen N, Loucks EB, Appleton AA, Kawachi I, Kubzansky LD, Non AL, et al. Early origins of inflammation: an examination of prenatal and childhood social adversity in a prospective cohort study. Psychoneuroendocrinology. Elsevier Ltd. 2015;51:403–13.

    Article  CAS  Google Scholar 

  44. Entringer S, Kumsta R, Nelson EL, Hellhammer DH, Wadhwa PD, Wüst S. Influence of prenatal psychosocial stress on cytokine production in adult women. Dev Psychobiol. 2008;50:579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tyrka AR, Parade SH, Valentine TR, Eslinger NM, Seifer R. Adversity in preschool-aged children: effects on salivary interleukin-1beta. Dev Psychopathol. United States. 2015;27:567–76.

    Article  Google Scholar 

  46. Copeland WE, Wolke D, Lereya ST, Shanahan L, Worthman C, Costello EJ. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood. Proc Natl Acad Sci. 2014;111:7570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jonker I, Rosmalen JGM, Schoevers RA. Childhood life events, immune activation and the development of mood and anxiety disorders: the TRAILS study. Transl Psychiatry. Nature Publishing Group. 2017;7:1–9.

    Google Scholar 

  48. Ehrlich KB, Ross KM, Chen E, Miller GE. Testing the biological embedding hypothesis: is early life adversity associated with a later proinflammatory phenotype? Dev Psychopathol. 2016;28:1273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walsh K, Basu A, Werner E, Lee S, Feng T, Osborne LM, et al. Associations among child abuse, depression, and interleukin-6 in pregnant adolescents: paradoxical findings. Psychosom Med. 2016;78:920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bielas H, Jud A, Lips U, Reichenbach J, Landolt MA. Increased number of activated T cells in lymphocyte subsets of maltreated children: data from a pilot study. J Psychosom Res. Elsevier Inc. 2012;73:313–8.

    Article  CAS  Google Scholar 

  51. Elwenspoek MMC, Hengesch X, Leenen FAD, Schritz A, Sias K, Schaan VK, et al. Proinflammatory T cell status associated with early life adversity. J Immunol. 2017;199:4046–55.

    Article  CAS  PubMed  Google Scholar 

  52. Hantsoo L, Jašarević E, Criniti S, McGeehan B, Tanes C, Sammel MD, et al. Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy. Brain Behav Immun. 2019;75:240–50.

    Article  PubMed  Google Scholar 

  53. Hartwell KJ, Moran-Santa Maria MM, Twal WO, Shaftman S, DeSantis SM, McRae-Clark AL, et al. Association of elevated cytokines with childhood adversity in a sample of healthy adults. J Psychiatr Res. Elsevier Ltd. 2013;47:604–10.

    Article  Google Scholar 

  54. Carpenter LL, Gawuga CE, Tyrka AR, Price LH. C-reactive protein, early life stress, and wellbeing in healthy adults. Acta Psychiatr Scand. 2012;126:402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McDade TW, Hoke M, Borja JB, Adair LS, Kuzawa C. Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav Immun. Elsevier Inc. 2013;31:23–30.

    Article  Google Scholar 

  56. Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, et al. Adverse childhood experiences and adult risk factors for age-related disease. Arch Pediatr Adolesc Med. 2009;163:1135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, Price LH. Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology. Nature Publishing Group. 2010;35:2617–23.

    Article  CAS  Google Scholar 

  58. Janusek LW, Tell D, Gaylord-Harden N, Mathews HL. Relationship of childhood adversity and neighborhood violence to a proinflammatory phenotype in emerging adult African American men: an epigenetic link. Brain Behav Immun. Elsevier Inc. 2017;60:126–35.

    Article  Google Scholar 

  59. Taylor SE, Lehman BJ, Kiefe CI, Seeman TE. Relationship of early life stress and psychological functioning to adult C-reactive protein in the coronary artery risk development in young adults study. Biol Psychiatry. 2006;60:819–24.

    Article  CAS  PubMed  Google Scholar 

  60. Bertone-Johnson ER, Whitcomb BW, Missmer SA, Karlson EW, Rich-Edwards JW. Inflammation and early-life abuse in women. Am J Prev Med. Elsevier Inc. 2012;43:611–20.

    Article  Google Scholar 

  61. Lacey RE, Kumari M, McMunn A. Parental separation in childhood and adult inflammation: the importance of material and psychosocial pathways. Psychoneuroendocrinology. Elsevier Ltd. 2013;38:2476–84.

    Article  CAS  Google Scholar 

  62. Rooks C, Veledar E, Goldberg J, Bremner JD, Vaccarino V. Early trauma and inflammation: role of familial factors in a study of twins. Psychosom Med. 2012;74:146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Slopen N, Lewis TT, Gruenewald TL, Mujahid MS, Ryff CD, Albert MA, et al. Early life adversity and inflammation in African Americans and whites in the midlife in the United States survey. Psychosom Med. 2010;72:694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Runsten S, Korkeila K, Koskenvuo M, Rautava P, Vainio O, Korkeila J. Can social support alleviate inflammation associated with childhood adversities? Nord J Psychiatry. 2014;68:137–44.

    Article  PubMed  Google Scholar 

  65. Schwaiger M, Grinberg M, Moser D, Zang JCS, Heinrichs M, Hengstler JG, et al. Altered stress-induced regulation of genes in monocytes in adults with a history of childhood adversity. Neuropsychopharmacology. 2016;41:2530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Norton MC, Hatch DJ, Munger RG, Smith KR. Family member deaths in childhood predict systemic inflammation in late life. Biodemography Soc Biol. Routledge. 2017;63:104–15.

    Article  Google Scholar 

  67. Lin JE, Neylan TC, Epel E, O’Donovan A. Associations of childhood adversity and adulthood trauma with C-reactive protein: a cross-sectional population-based study. Brain Behav Immun. Elsevier Inc. 2016;53:105–12.

    Article  CAS  Google Scholar 

  68. Gouin JP, Glaser R, Malarkey WB, Beversdorf D, Kiecolt-Glaser JK. Childhood abuse and inflammatory responses to daily stressors. Ann Behav Med. 2012;44:287–92.

    Article  PubMed  Google Scholar 

  69. Kiecolt-Glaser JK, Gouin JP, Weng NP, Malarkey WB, Beversdorf DQ, Glaser R. Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med. 2011;73:16–22.

    Article  PubMed  Google Scholar 

  70. Shirtcliff EA, Coe CL, Pollak SD. Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc Natl Acad Sci. 2009;106:2963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Elwenspoek MMC, Sias K, Hengesch X, Schaan VK, Leenen FAD, Adams P, et al. T cell immunosenescence after early life adversity: association with cytomegalovirus infection. Front Immunol. 2017;8:1–12.

    Article  CAS  Google Scholar 

  72. Boeck C, Krause S, Karabatsiakis A, Schury K, Gündel H, Waller C, et al. History of child maltreatment and telomere length in immune cell subsets: associations with stress- and attachment-related hormones. Dev Psychopathol. 2018;30:539–51.

    Article  PubMed  Google Scholar 

  73. Holt PG, Jones CA. The development of the immune system during pregnancy and early life. Allergy. John Wiley & Sons, Ltd. 2000;55:688–97.

    CAS  Google Scholar 

  74. Perusini JN, Fanselow MS. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem. United States. 2015;22:417–25.

    Article  CAS  Google Scholar 

  75. Clark SM, Sand J, Francis TC, Nagaraju A, Michael KC, Keegan AD, et al. Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain Behav Immun. Elsevier Inc. 2014;38:192–201.

    Article  CAS  Google Scholar 

  76. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation : a meta-analysis of peripheral C-reactive protein , interleukin-6 and tumour necrosis factor-α. Nature Publishing Group. 2015;21:642–9.

    Google Scholar 

  77. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. Elsevier. 2011;10:319–29.

    Article  CAS  Google Scholar 

  78. Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederländer NJ, Jeganathan K, et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol. Nature Publishing Group, A Division of Macmillan Publishers Limited. All Rights Reserved. 2012;14:649.

    CAS  Google Scholar 

  79. Xu W, Larbi A. Markers of T cell senescence in humans. Int J Mol Sci. 2017;18:1–13.

    Article  CAS  Google Scholar 

  80. Verhoeven JE, Révész D, van Oppen P, Epel ES, Wolkowitz OM, Penninx BWJH. Anxiety disorders and accelerated cellular ageing. Br J Psychiatry. Cambridge University Press. 2015;206:371–8.

    Article  Google Scholar 

  81. Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. Cell Press. 2019;29:1061–1077.e8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pariante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giacobbe, J., Pariante, C.M., Borsini, A. (2021). The Life-Long Consequences of Prenatal and Childhood Stress on the Innate and Adaptive Immune System. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics