Skip to main content

Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

The low atomic number of carbons, combined with the half-full shell of valence electrons and medium electronegativity, provide an important basis for strong covalent bonding to other carbon atoms and other elements. Moreover, this supports the wide differences of carbon-containing natural atoms, counting the atoms of life. Recent breakthroughs in carbon-based nanomaterials’ science and technology use paraffinic waxes as a carbon source where it consists of not less than 18 carbon number per single paraffin crystal. Paraffinic waxes are considered a cheap by-product in the petroleum refinery, which is considered a source for nanocarbon synthesis, whether it is activated nanocarbon or carbon nanotubes and nanocarbon fibers. This chapter describes the separation of paraffinic petroleum wax, its purification, and characterization, besides that, the synthesis of nanocarbon and its evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACs:

Activated carbons

CNTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

EPA:

Environmental protection agency

GO:

Graphene oxide

MWCNTs:

Multi wall carbon nanotubes

RGO:

Reduced graphene oxide

SWCNTs:

Single wall carbon nanotubes

TNT:

Titanium nanotube

UV:

Ultra-violet

References

  1. Awadallah AE, Aboul-Enein AA, Aboul-Gheit AK (2014) Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes. Fuel 129:27–36

    Article  CAS  Google Scholar 

  2. Awadallah AE, Aboul-Enein AA, Aboul-Gheit AK (2014) Effect of progressive Co loading on commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Convers Manage 77:143–151

    Article  CAS  Google Scholar 

  3. Li J, Dong L, Xiong L, Yang Y, Du Y, Zhao L, Wang H, Peng S (2016) High-loaded NiCuSiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments. Int J Hydrogen Energy 41(28):12038–12048

    Article  CAS  Google Scholar 

  4. Li Y, Li D, Wang G (2011) Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: a review. Catal Today 162(1):1–48

    Article  CAS  Google Scholar 

  5. Aboul-Enein AA, Soliman FS, Betiha MA (2019) Co-production of hydrogen and carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: effect of Ni–Cu loading on the catalytic activity. Int J Hydrogen Energy 44(59):31104–31120

    Article  CAS  Google Scholar 

  6. Thomas R (2008) Process chemistry of lubricant base stocks: conventional base stock production. CRC Press, London

    Google Scholar 

  7. Mazee W (1973) Modern petroleum technology. Applied Science Publishers Ltd., on behalf of The Institute of Petroleum, Great Britain, p 782

    Google Scholar 

  8. Sharma R, Monga Y, Puri A (2014) Magnetically separable silica@Fe3O4 core–shell supported nano-structured copper (II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. J Mol Catal A: Chem 393:84–95

    Article  CAS  Google Scholar 

  9. Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM, Sadegh H (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J Environ Manage 247:624–632

    Article  CAS  Google Scholar 

  10. Ethiraj AS, Uttam P, Varunkumar K, Chong KF, Ali GAM (2019) Photocatalytic performance of a novel semiconductor nanocatalyst: copper doped nickel oxide for phenol degradation. Mater Chem Phys 242:122520

    Article  CAS  Google Scholar 

  11. Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK (2016) Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32(6):1611–1620

    Article  CAS  Google Scholar 

  12. Yue Q, Zhang Y, Wang C, Wang X, Sun Z, Hou X-F, Zhao D, Deng Y (2015) Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J Mater Chem A 3(8):4586–4594

    Article  CAS  Google Scholar 

  13. Cui X, Zheng Y, Tian M, Dong Z (2017) Palladium nanoparticles supported on SiO2@Fe3O4@m-MnO2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2, 4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. Mol Catal 433:202–211

    Article  CAS  Google Scholar 

  14. Giahi M, Pathania D, Agarwal S, Ali GAM, Chong KF, Gupta VK (2019) Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Stud Univ Babes-Bolyai Chem 64(1):7–18

    CAS  Google Scholar 

  15. Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234

    Article  CAS  Google Scholar 

  16. Zhang X, Xie Y, Lin X, Li H, Cao H (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manage 15(4):420–430

    Article  CAS  Google Scholar 

  17. Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Env Sci Technol 44(10):1129–1165

    Article  CAS  Google Scholar 

  18. Ordoñez J, Gago EJ, Girard A (2016) Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev 60:195–205

    Article  CAS  Google Scholar 

  19. Wang W-Y, Yen CH, Lin J-L, Xu R-B (2019) Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery. J Mater Cycles Waste Manage 21(2):300–307

    Article  CAS  Google Scholar 

  20. Shah K, Gupta K, Sengupta B (2017) Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. J Env Chem Eng 5(5):5260–5269

    Article  CAS  Google Scholar 

  21. Cunha ML, Gahan CS, Menad N, Sandström Å (2008) Possibilities to use oxidic by-products for precipitation of Fe/As from leaching solutions for subsequent base metal recovery. Miner Eng 21(1):38–47

    Article  CAS  Google Scholar 

  22. Kanamori T, Matsuda M, Miyake M (2009) Recovery of rare metal compounds from nickel–metal hydride battery waste and their application to CH4 dry reforming catalyst. J Hazard Mater 169(1–3):240–245

    Article  CAS  Google Scholar 

  23. Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74

    Google Scholar 

  24. Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206

    Article  CAS  Google Scholar 

  25. Astruc D (2008) Transition-metal nanoparticles in catalysis: from historical background to the state-of-the art. Nanopart Catal 16:1–48

    Google Scholar 

  26. Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131(46):16589–16605

    Article  CAS  Google Scholar 

  27. Lu AH, EeL S, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  28. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12(5):743–754

    Article  CAS  Google Scholar 

  29. Shylesh S, Schuenemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49(20):3428–3459

    Article  CAS  Google Scholar 

  30. Claesson EM, Mehendale NC, Gebbink RJK, van Koten G, Philipse AP (2007) Magnetic silica colloids for catalysis. J Magn Magn Mater 311(1):41–45

    Article  CAS  Google Scholar 

  31. Yan J-M, Zhang X-B, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@ Co core–shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132(15):5326–5327

    Article  CAS  Google Scholar 

  32. Torki M, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I (2014) RuIII (OTf) Salophen CH2–NHSiO2–Fe: an efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Appl Organomet Chem 28(4):304–309

    Article  CAS  Google Scholar 

  33. Prasad R (2000) Petroleum refining technology, Khanna

    Google Scholar 

  34. Gupta A, Severin D (1997) Characterization of petroleum waxes by high temperature gas chromatography-correlation with physical properties. Pet Sci Technol 15(9–10):943–957

    Article  CAS  Google Scholar 

  35. Bennett H (1975) Industrial waxes. Chemical Pub. Co., New York

    Google Scholar 

  36. Letcher C (1984) Waxes. In: Encyclopedia of chemical technology, pp 466–481

    Google Scholar 

  37. Avilino S Jr (1994) Lubricant base oil and wax processing. Morcel Dekker Inc., New York, pp 17–36

    Google Scholar 

  38. Guthrie VB, Guthrie VB (1960) Petroleum products handbook, vol 33. McGraw-Hill, New York.

    Google Scholar 

  39. Concawe PW (1999) Related products. Report (99/110). Concawe, Brussels, p 1

    Google Scholar 

  40. Gottshall R, McCue C (1973) Criteria for quality of petroleum products. Applied Science Publishers Ltd., London (On behalf of the ….)

    Google Scholar 

  41. Freund M (1982) Paraffin products: properties, technologies, applications

    Google Scholar 

  42. Nakagawa H, Tsuge S, Itho T, Kimoto M (1983) Characterization of hydrocarbon waxes by gas–liquid chromatography with a high-resolution glass capillary column. J Chromatogr A 260:391–409

    Article  CAS  Google Scholar 

  43. Vainshtein B, Pinsker Z (1950) Opredelenie polozheniya vodoroda v kristallicheskoi reshetke parafina. Dokl Akad Nauk SSSR 72(1):53–56

    CAS  Google Scholar 

  44. Meyer G (2009) Thermal properties of micro-crystalline waxes in dependence on the degree of deoiling. SOFW J 135(8):43–50

    Google Scholar 

  45. Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15(9):6015–6021

    Article  CAS  Google Scholar 

  46. Wang Y, Guo J, Wang T, Shao J, Wang D, Yang Y-W (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5(4):1667–1689

    Article  CAS  Google Scholar 

  47. Wang X, Hu A, Meng C, Wu C, Yang S, Hong X (2020) Recent advance in Co3O4 and Co3O4-containing electrode materials for high-performance supercapacitors. Molecules 25(2):269

    Article  CAS  Google Scholar 

  48. Yang Q, Lu Z, Sun X, Liu J (2013) Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Scientific Reports 3:3537

    Article  Google Scholar 

  49. Pal M, Rakshit R, Singh AK, Mandal K (2016) Ultra high supercapacitance of ultra small Co3O4 nanocubes. Energy 103:481–486

    Article  CAS  Google Scholar 

  50. Cheng M, Duan S, Fan H, Su X, Cui Y, Wang R (2017) Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem Eng J 327:100–108

    Article  CAS  Google Scholar 

  51. Liu Z, Zhou W, Wang S, Du W, Zhang H, Ding C, Du Y, Zhu L (2019) Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor. J Alloy Compd 774:137–144

    Article  CAS  Google Scholar 

  52. Zhang F, Yuan C, Lu X, Zhang L, Che Q, Zhang X (2012) Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J Power Sources 203:250–256

    Article  CAS  Google Scholar 

  53. Li J, Zhang P, Zhao X, Chen L, Shen J, Li M, Ji B, Song L, Wu Y, Liu D (2019) Structure-controlled Co–Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. J Colloid Interface Sci 549:236–245

    Article  CAS  Google Scholar 

  54. Wang P, Zhou H, Meng C, Wang Z, Akhtar K, Yuan A (2019) Cyanometallic framework-derived hierarchical Co3O4–NiO/graphene foam as high-performance binder-free electrodes for supercapacitors. Chem Eng J 369:57–63

    Article  CAS  Google Scholar 

  55. Babu IM, William JJ, Muralidharan G (2019) Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl Surf Sci 480:371–383

    Article  CAS  Google Scholar 

  56. Fan H, Quan L, Yuan M, Zhu S, Wang K, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao C-n (2016) Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. Electrochim Acta 188:222–229

    Article  CAS  Google Scholar 

  57. Chen H, Wang J, Liao F, Han X, Zhang Y, Xu C, Gao L (2019) Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances. Ceram Int 45(9):11876–11882

    Article  CAS  Google Scholar 

  58. Wang Y, Huo J (2020) C, N co-doped Co3O4 hollow spheres prepared via hydrothermal reaction for improved electrochemical activity. Int J Hydrogen Energy 45(1):1170–1176

    Article  CAS  Google Scholar 

  59. Deng S, Xiao X, Chen G, Wang L, Wang Y (2016) Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim Acta 196:316–327

    Article  CAS  Google Scholar 

  60. Dlamini N, Mukaya HE, Van Zyl RL, Chen CT, Zeevaart RJ, Mbianda XY (2019) Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. Mater Sci Eng C 104:109967

    Article  CAS  Google Scholar 

  61. Zhou Y, Liu Y, Zhou X, Gao Y, Gao C, Wang L (2019) High performance p-type organic thermoelectric materials based on metalloporphyrin/single-walled carbon nanotube composite films. J Power Sources 423:152–158

    Article  CAS  Google Scholar 

  62. Li G, Chen M, Ouyang Y, Yao D, Lu L, Wang L, Xia X, Lei W, Chen S-M, Mandler D (2019) Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl Surf Sci 469:941–950

    Article  CAS  Google Scholar 

  63. Tao F, Zhao Y-Q, Zhang G-Q, Li H-L (2007) Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun 9(6):1282–1287

    Article  CAS  Google Scholar 

  64. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  CAS  Google Scholar 

  65. Qin Q, Chen L, Wei T, Liu X (2019) MoS2/NiS yolk–shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 15(29):1803639

    Article  CAS  Google Scholar 

  66. Wang CX, Sun CY, Yu CJ, Li YX, Zhao J, Huang DX, Song YB (2012) Fabrication of highly ordered carbon networks as catalyst supports for aerobic oxidation of glucose. Adv Mater Res 476–478:1186–1192

    Article  CAS  Google Scholar 

  67. Zhang F, Gu D, Yu T, Zhang F, Xie S, Zhang L, Deng Y, Wan Y, Tu B, Zhao D (2007) Mesoporous carbon single-crystals from organic−organic self-assembly. J Am Chem Soc 129(25):7746–7747

    Article  CAS  Google Scholar 

  68. Shinde SK, Ramesh S, Bathula C, Ghodake GS, Kim DY, Jagadale AD, Kadam AA, Waghmode DP, Sreekanth TVM, Kim HS, Nagajyothi PC, Yadav HM (2019) Novel approach to synthesize NiCo2S4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co. Sci Rep 9(1):13717

    Google Scholar 

  69. Zhu T, Wang Z, Ding S, Chen JS, Lou XWD (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv 1(3):397–400

    Article  CAS  Google Scholar 

  70. Gaikar P, Pawar SP, Mane RS, Nuashad M, Shinde D (2016) Synthesis of nickel sulfide as a promising electrode material for pseudocapacitor application. RSC Adv 6(113):112589–112593

    Article  CAS  Google Scholar 

  71. Hsu Y-K, Chen Y-C, Lin Y-G (2014) Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim Acta 139(Suppl C):401–407

    Google Scholar 

  72. Zhang H, Yu X, Guo D, Qu B, Zhang M, Li Q, Wang T (2013) Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl Mater Interfaces 5(15):7335–7340

    Article  CAS  Google Scholar 

  73. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  74. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium CEPA peel to energy storage system. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00520-3

  75. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044

    Article  CAS  Google Scholar 

  76. Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739

    Article  Google Scholar 

  77. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  78. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  79. Zhang R, Lu C, Shi Z, Liu T, Zhai T, Zhou W (2019) Hexagonal phase NiS octahedrons co-modified by 0D-, 1D-, and 2D carbon materials for high-performance supercapacitor. Electrochim Acta 311:83–91

    Article  CAS  Google Scholar 

  80. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9):9531–9541

    Article  CAS  Google Scholar 

  81. Wang J, Dong S, Ding B, Wang Y, Hao X, Dou H, Xia Y, Zhang X (2017) Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Nat Sci Rev 4(1):71–90

    Article  CAS  Google Scholar 

  82. Liu TC, Pell W, Conway B, Roberson S (1998) Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide. J Electrochem Soc 145(6):1882–1888

    Article  CAS  Google Scholar 

  83. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18(9):1178–1182

    Article  CAS  Google Scholar 

  84. Balogun M-S, Qiu W, Wang W, Fang P, Lu X, Tong Y (2015) Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A 3(4):1364–1387

    Article  CAS  Google Scholar 

  85. Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176(1):288–293

    Article  CAS  Google Scholar 

  86. Saha S, Jana M, Khanra P, Samanta P, Koo H, Murmu NC, Kuila T (2015) Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl Mater Interfaces 7(26):14211–14222

    Article  CAS  Google Scholar 

  87. Wang Y, Yang W, Yang J (2007) A Co–Al layered double hydroxides nanosheets thin-film electrode fabrication and electrochemical study. Electrochem Solid-State Lett 10(10):A233–A236

    Article  CAS  Google Scholar 

  88. Prevot V, Forano C, Khenifi A, Ballarin B, Scavetta E, Mousty C (2011) A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films. Chem Commun 47(6):1761–1763

    Article  CAS  Google Scholar 

  89. Gao X, Liu X, Wu D, Qian B, Kou Z, Pan Z, Pang Y, Miao L, Wang J (2019) Significant role of Al in ternary layered double hydroxides for enhancing electrochemical performance of flexible asymmetric supercapacitor. Adv Func Mater 29(36):1903879

    Article  CAS  Google Scholar 

  90. Gao X, Zhao Y, Dai K, Wang J, Zhang B, Shen X (2020) NiCoP nanowire@ NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J 384:123373

    Article  CAS  Google Scholar 

  91. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel-Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Func Mater 24(7):934–942

    Article  CAS  Google Scholar 

  92. Guo XL, Liu XY, Hao XD, Zhu SJ, Dong F, Wen ZQ, Zhang YX (2016) Nickel-Manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim Acta 194(Suppl C):179–186

    Google Scholar 

  93. Shao M, Ning F, Zhao Y, Zhao J, Wei M, Evans DG, Duan X (2012) Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem Mater 24(6):1192–1197

    Article  CAS  Google Scholar 

  94. Zhang L, Wang J, Zhu J, Zhang X, San Hui K, Hui KN (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1(32):9046–9053

    Article  CAS  Google Scholar 

  95. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214

    Article  CAS  Google Scholar 

  96. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol Mater Sci Ed 32(2):305–320

    Article  CAS  Google Scholar 

  97. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. J Teknol 79(7):1–10

    Google Scholar 

  98. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malays J Anal Sci 21(2):334–345

    Article  Google Scholar 

  99. Marina PE, Ali GAM, See LM, Teo EYL, Ng E-P, Chong KF (2016) In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.02.006

    Article  Google Scholar 

  100. Ali GAM, Yusoff MM, Chong KF (2016) Graphene electrochemical production and its energy storage properties. ARPN J Eng Appl Sci 11(16):9712–9717

    CAS  Google Scholar 

  101. Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Hamdy AS (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472

    Article  CAS  Google Scholar 

  102. Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24(1):25–34

    Article  CAS  Google Scholar 

  103. Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer International Publishing, Cham, pp 1–40

    Chapter  Google Scholar 

  104. Dąbrowski A (2001) Adsorption—from theory to practice. Adv Coll Interface Sci 93(1–3):135–224

    Article  Google Scholar 

  105. Lee SP, Ali GAM, Algarni H, Chong KF (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180

    Article  CAS  Google Scholar 

  106. DiGiulio D, Wilkin R, Miller C, Oberley G (2011) Investigation of groundwater contamination near Pavillion, Wyoming. US Environmental Protection Agency Draft Report. US EPA. https://www.epa.gov/region8/superfund/wy/pavillion/EPA_ReportOnPavillion_Dec-8-2011.pdf

  107. Machida M, Mochimaru T, Tatsumoto H (2006) Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44(13):2681–2688

    Article  CAS  Google Scholar 

  108. Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5):1057–1062

    Article  CAS  Google Scholar 

  109. Zhao H, Baker GA, Holmes SJO (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9(6):1908–1916

    Article  CAS  Google Scholar 

  110. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170(2–3):395–410

    Article  CAS  Google Scholar 

  111. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal Chem 51:33–43

    Article  CAS  Google Scholar 

  112. Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R, Kuang Y (2013) Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224(1):1372

    Article  CAS  Google Scholar 

  113. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42(16):5682–5689

    Article  CAS  Google Scholar 

  114. Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40(41):10945–10952

    Article  CAS  Google Scholar 

  115. Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12):7558–7562

    Article  CAS  Google Scholar 

  116. El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, El-Wahab SA, Yahea D, Hussein G, Atrees M (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379

    Article  CAS  Google Scholar 

  117. Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Article  CAS  Google Scholar 

  118. Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009

    Article  CAS  Google Scholar 

  119. Yao Y, Yang Z, Zhang D, Peng W, Sun H, Wang S (2012) Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind Eng Chem Res 51(17):6044–6051

    Article  CAS  Google Scholar 

  120. Gollavelli G, Chang C-C, Ling Y-C (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1(5):462–472

    Article  CAS  Google Scholar 

  121. Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2011) One-pot synthesis of magnetic graphene nanocomposites decorated with core@ double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985

    Article  CAS  Google Scholar 

  122. Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4(9):4991–5000

    Article  CAS  Google Scholar 

  123. Chandra V, Park J, Chun Y, Lee J, Hwang I, Kim K (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  CAS  Google Scholar 

  124. Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt (II) removal. J Phys Chem C 115(51):25234–25240

    Article  CAS  Google Scholar 

  125. WooáLee J, BináKim S (2011) Enhanced Cr (VI) removal using iron nanoparticle decorated graphene. Nanoscale 3(9):3583–3585

    Article  CAS  Google Scholar 

  126. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 4(3):1186–1193

    Article  CAS  Google Scholar 

  127. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta 93:350–357

    Article  CAS  Google Scholar 

  128. Yang Y, Xie Y, Pang L, Li M, Song X, Wen J, Zhao H (2013) Preparation of reduced graphene oxide/poly (acrylamide) nanocomposite and its adsorption of Pb (II) and methylene blue. Langmuir 29(34):10727–10736

    Article  CAS  Google Scholar 

  129. Wang L, Jiang L, Su D, Sun C, Chen M, Goh K, Chen Y (2014) Non-covalent synthesis of thermo-responsive graphene oxide–perylene bisimides-containing poly (N-isopropylacrylamide) hybrid for organic pigment removal. J Colloid Interface Sci 430:121–128

    Article  CAS  Google Scholar 

  130. Vasudevan S, Lakshmi J (2012) The adsorption of phosphate by graphene from aqueous solution. RSC Adv 2(12):5234–5242

    Article  CAS  Google Scholar 

  131. Zhang S, Shao Y, Liu J, Aksay IA, Lin Y (2011) Graphene–polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4– from wastewater. ACS Appl Mater Interfaces 3(9):3633–3637

    Article  CAS  Google Scholar 

  132. Shi G, Ding Y, Fang H (2012) Unexpectedly strong anion-π interactions on the graphene flakes. J Comput Chem 33(14):1328–1337

    Article  CAS  Google Scholar 

  133. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    Article  CAS  Google Scholar 

  134. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  135. Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38(7):1999–2011

    Article  CAS  Google Scholar 

  136. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41(2):782–796

    Article  CAS  Google Scholar 

  137. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3):741–772

    Article  CAS  Google Scholar 

  138. Khan Z, Chetia TR, Vardhaman AK, Barpuzary D, Sastri CV, Qureshi M (2012) Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. RSC Adv 2(32):12122–12128

    Article  CAS  Google Scholar 

  139. Li B, Cao H (2011) ZnO@graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21(10):3346–3349

    Article  CAS  Google Scholar 

  140. Wang Y, Wang W, Mao H, Lu Y, Lu J, Huang J, Ye Z, Lu B (2014) Electrostatic self-assembly of BiVO4–reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities. ACS Appl Mater Interfaces 6(15):12698–12706

    Article  CAS  Google Scholar 

  141. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Func Mater 20(23):4175–4181

    Article  CAS  Google Scholar 

  142. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(9):7426–7435

    Article  CAS  Google Scholar 

  143. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  144. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania−graphene nanocomposites. J Phys Chem C 113(46):19812–19823

    Article  CAS  Google Scholar 

  145. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705

    Article  CAS  Google Scholar 

  146. Liu X, Pan L, Lv T, Lu T, Zhu G, Sun Z, Sun C (2011) Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr (VI). Catal Sci Technol 1(7):1189–1193

    Article  CAS  Google Scholar 

  147. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  CAS  Google Scholar 

  148. Perera S, Mariano R, Vu K, Nour N, Seitz O, Chabal Y, Balkus K Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  CAS  Google Scholar 

  149. Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5(6):4529–4536

    Article  CAS  Google Scholar 

  150. Chen Z, Liu S, Yang M-Q, Xu Y-J (2013) Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces 5(10):4309–4319

    Article  CAS  Google Scholar 

  151. Xiong Z, Zhang LL, Ma J, Zhao X (2010) Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem Commun 46(33):6099–6101

    Article  CAS  Google Scholar 

  152. Liu S, Chen Z, Zhang N, Tang Z-R, Xu Y-J (2013) An efficient self-assembly of CdS nanowires–reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation. J Phys Chem C 117(16):8251–8261

    Article  CAS  Google Scholar 

  153. Zhai C, Zhu M, Bin D, Wang H, Du Y, Wang C, Yang P (2014) Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. ACS Appl Mater Interfaces 6(20):17753–17761

    Article  CAS  Google Scholar 

  154. Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6(22):20085–20092

    Article  CAS  Google Scholar 

  155. El-Maghrabi HH, Nada EA, Soliman FS, Moustafa YM, Amin AE-S (2016) One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst. Egypt J Petrol 25(4):575–584

    Article  Google Scholar 

  156. CDI (2016) Cobalt facts. Cited 15 July 2017. Available from: https://www.cobaltinstitute.org/

  157. Statista (2016) World cobalt reserves as of 2016. Cited 13 Aug 2017. Available from: https://www.statista.com/statistics/264930/global-cobalt-reserves/

  158. Cheang CY, Mohamed N (2016) Removal of cobalt from ammonium chloride solutions using a batch cell through an electrogenerative process. Sep Purif Technol 162:154–161

    Article  CAS  Google Scholar 

  159. Pazik PM, Chmielewski T, Glass HJ, Kowalczuk PB (2016) World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore. E S Web Conf 8:01063

    Article  CAS  Google Scholar 

  160. Crundwell FK (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier

    Google Scholar 

  161. Nelson E (2017) The hottest thing in the markets right now is an obscure metal mined in DR Congo. Batteries. Cited 15 Aug 2017. Available from: https://qz.com/969115/cobalt-is-the-unlikely-hero-of-financial-markets-right-now/

  162. Randall T (2017) The electric-car boom is so real even oil companies say it’s coming. Available from: https://www.bloomberg.com/news/articles/2017-04-25/electric-car-boom-seen-triggering-peak-oil-demand-in-2030s

  163. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  164. Times F (2017) Glencore deals mining blow to African copper producers. Cited 12 Sept 2017. Available from: https://www.ft.com/content/3f1d9664-562f-11e5-a28b-50226830d644

  165. Raugei M, Winfield P (2019) Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. J Clean Product 213:926–932

    Article  CAS  Google Scholar 

  166. van den Brink S, Kleijn R, Sprecher B, Tukker A (2020) Identifying supply risks by mapping the cobalt supply chain. Resour Conserv Recycl 156:104743

    Article  Google Scholar 

  167. Nada AA, Tantawy HR, Elsayed MA, Bechelany M (2018) Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci 78:116–125

    Google Scholar 

  168. El-Maghrabi HH, Nada AA, Diab KR, Youssef AM, Hamdy A, Roualdesb S, Abd El-Wahab S (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobio A: Chem 365:86–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amr A. Nada or Heba H. El-Maghrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nada, A.A. et al. (2021). Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_25

Download citation

Publish with us

Policies and ethics