Skip to main content

The Rare Earths, a Challenge to Mendeleev, No Less Today

  • Chapter
  • First Online:
150 Years of the Periodic Table

Part of the book series: Perspectives on the History of Chemistry ((PHC))

Abstract

Mendeleev’s first periodic table (1869) included just five rare earth elements. This article traces the discovery and isolation of the rare earths—scandium, yttrium and the lanthanides—a process that extended until 1947, as well as the efforts to locate them in the periodic system. The striking similarity of the chemistry of the metals has made their isolation in a pure state a challenge. Developments in their chemistry extending up to the present day are considered, including extending the range of their coordination numbers, an increasing number of compounds in unusual oxidation states, and most recently lanthanide-containing enzymes, raising questions about their role in living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thyssen P, Binnemans K (2011) Accommodation of the rare earths in the periodic table: A historical analysis. Handb Phys Chem Earths 41:1–93

    CAS  Google Scholar 

  2. Gadolin J (1794) Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen. Kongl Vetenskaps Acad Nya Handlingar 15:137–155

    Google Scholar 

  3. Pyykkö P, Orama O (1996) What did Johan Gadolin actually do? In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  4. Hisinger W, Berzelius J (1804) Cerium, ein neues Metall aus einer schwedischen Steinart. Bastnas Tungstein genannt, Neues allg J Chem 2:397–418

    Google Scholar 

  5. Klaproth MH (1804) Chemische Untersuchung des Ochroïts. Neues allg J Chem 2:303–316

    Google Scholar 

  6. Klaproth MH (1804, printed in 1807) Analyse chimique de l’ochroïte. Mémoires de l’Académie royale des Sciences et Belles-Lettres: 155–164

    Google Scholar 

  7. Vauquelin LN (1804) Essais sur l’ocroïte de M. Klaproth, lus à l’Institut le 12 geminal an 12. Ann Chim 50:140–143

    Google Scholar 

  8. Trofast J (1996) The discovery of cerium—A fascinating story. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 13–36

    Chapter  Google Scholar 

  9. Tansjö L (1996) Carl Gustav Mosander and his research on rare earths. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 37–54

    Chapter  Google Scholar 

  10. Mosander CG (1842) Något om Cer och Lanthan. Skand Naturf Forhandl 3:387–398

    Google Scholar 

  11. Mosander CG (1844) On the new metals, lanthanium and didymium, which are associated with cerium; and on erbium and terbium, new metals associated with yttria. Report of the thirteenth meeting of the British Association for the Advancement of Science held at Cork in August 1843, pp 25–32

    Google Scholar 

  12. Szabadvary F, Evans CH (1996) The fifty years following Mosander. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 55–66

    Chapter  Google Scholar 

  13. Delafontaine MA (1876) Le didyme de la cérite est probablement un mélange de plusieurs corps. CR Hebd Séances Acad 87:634–635

    Google Scholar 

  14. Auer von Welsbach C (1885) Die Zerlegung des Didyms in seine Elemente. Monatsh Chem 6:477–491

    Article  Google Scholar 

  15. Lecoq de Boisbaudran PE (1879) Nouvelles raies spectrales observées dans les substances extradites de la samarskite. CR Hebd Séances Acad Sci 88:322–324

    Google Scholar 

  16. Lecoq de Boisbaudran PE (1879) Recherches sur le samarium, radical d’une terre nouvelle extradite de la samarskite. CR Hebd Séances Acad Sci 89:212–214

    Google Scholar 

  17. Demarcay E (1901) Sur un nouvel élément, l’europium. CR Hebd Séances Acad Sci 132:1484–1486

    Google Scholar 

  18. Marignac J-C (1880) Sur les terres de la samarskite. Arch Sci Phys Nat 64:97–107

    Google Scholar 

  19. Lecoq de Boisbaudran PE (1886) Le Yα der M. de Marignac est définitivement nomme gadolinium. CR Hebd Séances Acad Sci 102:902

    Google Scholar 

  20. Marignac MC (1878) Sur l’ytterbine, nouvelle terre contenue dans la gadolinite. CR Hebd Séances Acad Sci 87:578–581

    Google Scholar 

  21. Cleve PT (1879) Om tillvaron af tvänne nya grundämnen i erbinjorden. Öfvers Kongl Vetensk-Akad Förh 36(7):11–14

    Google Scholar 

  22. Cleve PT (1879) Sur deux nouveaux éléments dans l’erbine. CR Hebd Séances Acad 89:478–481

    Google Scholar 

  23. Lecoq de Boisbaudran PE (1886) Sur le dysprosium. CR Hebd Séances Acad 102:1005–1006

    Google Scholar 

  24. Nilson LF (1879) Om scandium, en ny jordmetall. Öfvers Kongl Vetensk-Akad Förh 36(3), 47–51; published in translation (1879) Über Scandium, ein Neues Erdmetall. Ber Dtsch Chem Ges 12:554–557

    Article  Google Scholar 

  25. Cleve PT (1879) Om Skandium. Öfvers Kongl Vetensk-Akad Förh 36(7):3–10

    Google Scholar 

  26. Vickery RC (1960) The chemistry of yttrium and scandium. Pergamon, Oxford, p 4

    Google Scholar 

  27. Nilson LF (1880) Om ytterbiums atomvigt. Öfvers Kongl Vetensk-Akad Förh 37(6):45–52

    Google Scholar 

  28. Kragh H (1996) Elements 70, 71 and 72: Discoveries and controversies. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 67–89

    Chapter  Google Scholar 

  29. Baumgartner E, E (1996) Carl Auer von Welsbach a pioneer in the industrial application of rare earths. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 113–130

    Chapter  Google Scholar 

  30. Auer von Welsbach C (1907) Die Zerlegung des Ytterbiums in seine Elemente. Sitzungsberichte der mathematisch-naturwissenschaftliche Klasse der kaiserlichen Akademie der Wissenschaften Abteilung IIb 116:1425–1469

    Google Scholar 

  31. Urbain G (1907) Un nouvel element: le lutécium, résultant du dédoublement de l’ytterbium de Marignac. CR Hebd Séances Acad 145:759–762

    CAS  Google Scholar 

  32. Cotton SA, Hart FA (1975) The heavy transition elements. Macmillan, Basingstoke, p 188

    Google Scholar 

  33. Emsley J (2001) Nature’s building blocks—An A-Z guide to the elements. OUP, Oxford

    Google Scholar 

  34. James C (1911) Thulium I. J Am Chem Soc 33:1332–1344

    Article  CAS  Google Scholar 

  35. Mendeleev D (1869) Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeitschrift für Chemie 12:405–406

    Google Scholar 

  36. Mendeleev D (1870) Über die Stellung des Ceriums im System der Elemente. Bull Cl Phys-Math Acad Imp Sci St Petersb 16:45–51

    Google Scholar 

  37. Mendelejeff D (1872) Die periodische Gesetzmässigkeit der chemischen Elemente. Ann Chem Pharm Suppl 8:133–229

    Google Scholar 

  38. Bassett H (1892) A tabular expression of the periodic relations of the elements. Chem News 65(3–4):19

    Google Scholar 

  39. Brauner B (1902) Über die Stellung der Elemente der seltenen Erden im periodischen System von Mendelejeff. Z Anorg Allg Chem 32:1–30

    Article  Google Scholar 

  40. Cleve P-T (1882) Note préliminaire sur le didyme. CR Hebd Séances Acad 94:1528–1530

    Google Scholar 

  41. Brauner B (1882) Sur le didyme. CR Hebd Séances Acad 94:1718–1719

    Google Scholar 

  42. Adunka R, Orna MV (2018) Carl Auer von Welsbach: Chemist, inventor, entrepreneur. Springer, Cham

    Book  Google Scholar 

  43. Werner A (1905) Beitrag zum Aufbau des periodischen systems. Chem Ber 38:914–921

    Article  CAS  Google Scholar 

  44. Moseley HGJ (1913) The high-frequency spectra of the elements. Phil Mag 26:1024–1034

    Article  Google Scholar 

  45. Moseley HGJ (1914) The high-frequency spectra of the elements. Part II. Phil Mag 27:703–713

    Article  CAS  Google Scholar 

  46. Fontani M, Costa M, Orna MV (2014) The lost elements: The periodic table’s shadow side. OUP, New York

    Book  Google Scholar 

  47. Scerri E (2020) The periodic table: Its story and its significance, 2nd edn. OUP, New York

    Google Scholar 

  48. Prandtl W, Grimm A (1924) Über die Aufsuchung des Elementes Nr. 61. Z Anorg Allgem Chem 136:283–288

    Article  CAS  Google Scholar 

  49. Noddack I (1934) Das Periodische System der Elemente und seine Lücken. Angew Chem 47:301–305

    Article  CAS  Google Scholar 

  50. Harris JA, Hopkins BS (1926) Observations on the rare earths XXIII. Element no. 61. Part one. Concentration and isolation in impure state. J Am Chem Soc 48:1585–1594

    Article  CAS  Google Scholar 

  51. Harris JA, Yntema LF, Hopkins BS (1926) Observations on the rare earths XXIII. Element No. 61. Part two. X-ray analysis. J Am Chem Soc 48:1594–1598

    Article  CAS  Google Scholar 

  52. Prandtl W (1926) Auf der Suche nach dem Element Nr. 61. Angew Chem 39:897–898

    Article  CAS  Google Scholar 

  53. Prandtl W, Grimm A (1926) Auf der Suche nach dem Element Nr. 61 (II). Angew Chem 39:1333

    Article  CAS  Google Scholar 

  54. Rolla L, Fernandes L (1926) Über das Element der Atomnummer 61. Z Anorg Allg Chem 157:371–381

    Article  CAS  Google Scholar 

  55. Rolla L, Fernandes L (1927) Über Das Element der Atomnummer 61 (Florentium). Z Anorg Allg Chem 160:190–192

    Article  CAS  Google Scholar 

  56. Rolla L, Fernandes L (1927) Florentium. Z Anorg Allg Chem 163:40–42

    Article  CAS  Google Scholar 

  57. Rolla L, Fernandes L (1928) Florentium II. Z Anorg Allg Chem 169:319–320

    Article  CAS  Google Scholar 

  58. Mattauch J (1934) Zur Systematik der Isotopen. Z Physik 91:361–371

    Article  CAS  Google Scholar 

  59. Pool ML, Quill LL (1938) Radioactivity induced in the rare earth elements by fast neutrons. Phys Rev 53:437

    Article  CAS  Google Scholar 

  60. Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781–2785

    Article  CAS  PubMed  Google Scholar 

  61. Marinsky JA (1996) The search for element 61. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, p 101

    Google Scholar 

  62. Atreep M, Kuroda PK (1968) Promethium in pitchblende. J Inorg Nucl Chem 30:699–703

    Article  Google Scholar 

  63. Sidgwick NV (1950) The chemical elements and their compounds, vol I. OUP, Oxford, p 456

    Google Scholar 

  64. Jantsch G, Wigdorow S (1911) Zur Kenntnis der Doppelnitrate der seltenen Erden. 1. Mitteilung. Über die Doppelnitrate der seltenen Erden mit den Alkalielementen. Z Anorg Allgem Chem 69:221–231

    Article  CAS  Google Scholar 

  65. Jantsch G (1912) Zur Kenntnis der Doppelnitrate der seltenen Erden. II. Mitteilung. Z Anorg Allgem Chem 76:303–323

    Google Scholar 

  66. Callow RJ (1966) The rare earth industry. Pergamon, Oxford, pp 41–58

    Google Scholar 

  67. Yost DM, Russell H, Garner CS (1947) The rare-earth elements and their compounds. Wiley, New York, p 43

    Google Scholar 

  68. Spedding FH, Voigt AF, Gladrow EM, Sleight NR (1947) The separation of rare earths by ion exchange. I. Cerium and yttrium. J Am Chem Soc 69:2777–2781

    Article  CAS  PubMed  Google Scholar 

  69. Moeller T (1963) The chemistry of the lanthanides. Reinhold, New York, pp 80–91

    Google Scholar 

  70. Bünzli J-CG, McGill I (2018) Rare earths. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  71. Warf JC (1949) Extraction of cerium(IV) nitrate by butyl phosphate. J Am Chem Soc 71:3257–3258

    Article  CAS  Google Scholar 

  72. Peppard DF, Mason GW, Maier JL, Driscoll WL (1957) Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J Inorg Nucl Chem 4:334–343

    Article  CAS  Google Scholar 

  73. Cotton SA (2006) Lanthanide and actinide chemistry. Wiley, Chichester p 36

    Book  Google Scholar 

  74. Cotton SA (1991) Lanthanides and actinides. Macmillan, Basingstoke, p 51

    Book  Google Scholar 

  75. Martell AE, Smith RM (1974) Critical stability constants, vols. 1–6. Plenum, New York

    Google Scholar 

  76. Bünzli J-CG (2014) Lanthanides. Kirk-Othmer encyclopedia of chemical technology. Chichester, Wiley

    Google Scholar 

  77. Goonan TG (2011) Rare earth elements-end use and recyclability. U.S. Geological Survey, Reston, VA, p 5

    Google Scholar 

  78. Atwood DA (2012) Sustainability of rare earth resources. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 21–25

    Google Scholar 

  79. Binnemans K, Jones PT, Van Acker K, Blanpain B, Mishra B, Apelian D (2013) Rare-earth economics: The balance problem. JOM 65:846–848

    Article  Google Scholar 

  80. Xie Y, Hou Z, Goldfarb RJ, Guo X, Wang L (2016) Rare earth element deposits in China. Rev Econ Geol 18:115–136

    Google Scholar 

  81. Yang XJ, Lin A, Li X-L, Wu Y, Zhou W, Chen Z (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136

    Article  Google Scholar 

  82. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539

    Article  CAS  Google Scholar 

  83. Takaya Y et al (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci Rep 8:5763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pimentel GC, Spratley RD (1971) Understanding chemistry. Holden-Day, San Francisco, p 862

    Google Scholar 

  85. Kim Y-C, Oishi J (1979) On the valence changes of lanthanide elements in compounds and the enthalpies of formation and stabilities of their dihalides. J Less Common Met 65:199–210

    Article  CAS  Google Scholar 

  86. Smith DW (1986) A simple empirical analysis of the enthalpies of formation of lanthanide halides and oxides. J Chem Educ 63:228–231

    Article  CAS  Google Scholar 

  87. Smith DW (1990) Inorganic substances. CUP, Cambridge

    Book  Google Scholar 

  88. Platt AWG (2012) Variable valency. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 35–42

    Google Scholar 

  89. Sroor FMA, Edelmann FT (2012) Tetravalent chemistry: Inorganic. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 313–320

    Google Scholar 

  90. So Y-M, Leung W-H (2017) Recent advances in the coordination chemistry of cerium(IV) complexes. Coord Chem Rev 340:172–197

    Article  CAS  Google Scholar 

  91. Anwander R, Dolg M, Edelmann FT (2017) The difficult search for organocerium(iv) compounds. Chem Soc Rev 46:6697–6709

    Article  CAS  PubMed  Google Scholar 

  92. Persson I (2010) Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl Chem 82:1901–1917

    Article  CAS  Google Scholar 

  93. Demars TJ, Bera MK, Seifert S, Antonio MR, Ellis RJ (2015) Revisiting the solution structure of ceric ammonium nitrate. Angew Chem Int Ed 54:7534–7538

    Article  CAS  Google Scholar 

  94. Urbain G, Budischovsky E (1897) Recherches sur les sables monazités. CR Hebd Séances Acad 124:618–621

    CAS  Google Scholar 

  95. Meyer RJ, Jacoby R (1901) Die Doppelnitrate des vierwertigen Ceriums und des Thoriums. Z Anorg Allg Chem 27:359–389

    Article  CAS  Google Scholar 

  96. Imamoto T (1996) Lanthanides in organic synthesis. Academic Press, London, pp 119–123

    Google Scholar 

  97. Klemm W, Henkel P (1934) Messungen an zwei‐ und vierwertigen Verbindungen der seltenen Erden. V. Certetrafluorid. Z Anorg Allg Chem 220:180–182

    Google Scholar 

  98. Caughlan CN, Mazhar-ul-Haque FA, Hart FA, VanNice R (1971) Crystal and molecular structure of tetranitratobis(triphenylphosphine oxide)cerium(IV). Inorg Chem 10:115–122

    Article  CAS  Google Scholar 

  99. Champion MJD, Levason W, Reid G (2014) Synthesis and structure of [CeF4(Me2SO)2]—A rare neutral ligand complex of a lanthanide tetrafluoride. J Fluorine Chem 157:19–21

    Article  CAS  Google Scholar 

  100. Bradley DC, Chatterjee AK, Wardlaw W (1956) Structural chemistry of the alkoxides. Part VI. Primary alkoxides of quadrivalent cerium and thorium. J Chem Soc: 2260–2264

    Google Scholar 

  101. Friedrich J, Schneider D, Bock L, Maichle-Mössmer C, Anwander R (2017) Cerium(IV) neopentoxide complexes. Inorg Chem 56:8114–8127

    Article  CAS  PubMed  Google Scholar 

  102. Crozier AR, Bienfait AM, Maichle-Mössmer C, Törnroos KW, Anwander R (2013) A homoleptic tetravalent cerium silylamide. Chem Comm 49:87–89

    Article  CAS  PubMed  Google Scholar 

  103. Williams UJ, Carroll PJ, Schelter EJ (2014) Synthesis, bonding, and reactivity of a cerium(IV) fluoride complex. Inorg Chem 53:6338–6345

    Article  CAS  PubMed  Google Scholar 

  104. Morton C, Alcock NW, Lees MR, Munslow IJ, Sanders CJ, Scott P (1999) Stabilization of cerium(IV) in the presence of an iodide ligand: Remarkable effects of Lewis acidity on valence state. J Am Chem Soc 121:11255–11256

    Article  CAS  Google Scholar 

  105. Hitchcock PB, Hulkes AG, Lappert MF, Li Z (2004) Cerium(III) dialkyl dithiocarbamates from [Ce{N(SiMe3)2}3] and tetraalkylthiuram disulfides, and [Ce(κ2-S2CNEt2)4] from the CeIII precursor; TbIII and NdIII analogues. J Chem Soc Dalton Trans 129–136

    Google Scholar 

  106. Willauer AR, Palumbo CT, Fadaei-Tirani F, Zivkovic I, Douair I, Maron L, Mazzanti M (2020) Accessing the +IV oxidation state in molecular complexes of praseodymium. J Am Chem Soc 142:5538–5542

    Article  CAS  PubMed  Google Scholar 

  107. Palumbo CT, Zivkovic I, Scopelliti R, Mazzanti M (2019) Molecular complex of Tb in the +4 oxidation state. J Am Chem Soc 141:9827–9831

    Article  CAS  PubMed  Google Scholar 

  108. Rice NT, Popov IA, Russo DR, Bacsa J, Batista ER, Yang P, Telser J, La Pierre HS (2019) Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J Am Chem Soc 141:13222–13233

    Article  CAS  PubMed  Google Scholar 

  109. Garcia J, Allen MJ (2012) Developments in the coordination chemistry of europium(II). Eur J Inorg Chem: 4550–4563

    Google Scholar 

  110. Moreau G, Helm L, Purans J, Merbach AE (2002) Structural investigation of the aqueous Eu2+ ion: comparison with Sr2+ using the XAFS technique. J Phys Chem A 106:3034–3043

    Article  CAS  Google Scholar 

  111. Garcia J, Kuda-Wedagedara ANW, Allen MJ (2012) Physical properties of Eu2+‐containing cryptates as contrast agents for ultrahigh‐field magnetic resonance imaging. Eur J Inorg Chem: 2135–2140

    Google Scholar 

  112. Matignon C, Cazes EC (1906) Le chlorure samareux. Ann Chim Phys 8:417–426

    CAS  Google Scholar 

  113. Meyer G (2012) The divalent state in solid rare earth metal halides. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 161–173

    Google Scholar 

  114. Tilley TD, Zalkin A, Andersen RA, Templeton DH (1981) Divalent lanthanide chemistry. Preparation of some four- and six-coordinate bis[(trimethylsilyl)amido] complexes of europium(II). Crystal structure of bis[bis(trimethylsilyl)amido]bis(1,2-dimethoxyethane)europium(II). Inorg Chem 20:551–554

    Article  CAS  Google Scholar 

  115. Ortu F, Mills DP (2019) Low coordinate rare earth and actinide complexes. In: Bünzli J-C G, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths 55:1–87

    Google Scholar 

  116. Evans WJ, Allen NT, Ziller JW (2000) The availability of dysprosium diiodide as a powerful reducing agent in organic synthesis: Reactivity studies and structural analysis of DyI2((DME)3 and its naphthalene reduction product. J Am Chem Soc 122:11749–11750

    Article  CAS  Google Scholar 

  117. Bochkarev MN (2004) Molecular compounds of “new” divalent lanthanides. Coord Chem Rev 248:835–851

    Article  CAS  Google Scholar 

  118. Hitchcock PB, Lappert MF, Maron L, Protchenko AV (2008) Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew Chem Int Ed 47:1488–1491

    Article  CAS  Google Scholar 

  119. MacDonald MR, Ziller JW, Evans WJ (2011) Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J Am Chem Soc 133:15914–15917

    Article  CAS  PubMed  Google Scholar 

  120. Evans WJ (2016) Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35:3088–3100

    Article  CAS  Google Scholar 

  121. Wyckoff RWG, Posnjak E (1921) The crystal structure of ammonium chloroplatinate. J Am Chem Soc 43:2292–2309

    Article  CAS  Google Scholar 

  122. Moeller T (1967) Coordination chemistry of the lanthanide elements—One hundred years of development and understanding. In: Kaufmann GB (ed) Werner centennial. Adv Chem Ser 62:306–317

    Google Scholar 

  123. Ketelaar JAA (1937) The crystal structure of the ethyl sulphates of the rare earths and yttrium. Physica 4:619–630

    Article  CAS  Google Scholar 

  124. Helmholz L (1939) The Crystal structure of neodymium bromate enneahydrate, Nd(Br O3)3·9H2O. J Am Chem Soc 61:1544–1550

    Article  CAS  Google Scholar 

  125. Hart FA, Laming FP (1965) Lanthanide complexes—II: Complexes of 1:10-phenanthroline with lanthanide acetates and nitrates. J Inorg Nucl Chem 27:1605–1610

    Article  CAS  Google Scholar 

  126. Kepert DL, Semenova LI, Sobolev AN, White AH (1996) Structural systematics of rare earth complexes. IX. Tris(nitrato-O, O′)(bidentate-N, N′)lutetium(III), N, N′-bidentate equals 2,2′-bipyridine or 1,10-phenanthroline. Austral J Chem 49:1005–1008

    Article  CAS  Google Scholar 

  127. Zalkin A, Forrester JD, Templeton DH (1963) Crystal structure of cerium magnesium nitrate hydrate. J Chem Phys 39:2881–2891

    Article  CAS  Google Scholar 

  128. Hoard JL, Lee B, Lind MD (1965) On the structure-dependent behavior of ethylenediaminetetraacetato complexes of the rare earth Ln3+ ions. J Am Chem Soc 87:1612–1613

    Article  CAS  Google Scholar 

  129. Janicki R, Mondry A (2014) A new approach to determination of hydration equilibria constants for the case of [Er(EDTA)(H2O)n] complexes. Phys Chem Chem Phys 16:26823–26831

    Article  CAS  PubMed  Google Scholar 

  130. Binnemans K (2005) Rare-earth beta-diketonates. In: Gschneidner KA, Bünzli, J-C G, Pecharsky VK (eds), Handbook on the physics and chemistry of rare earths 35:107–272

    Google Scholar 

  131. Frost GH, Hart FA, Heath C, Hursthouse MB (1969) The crystal structure of tris-(2,2′,6′,2″-terpyridyl)europium(III) perchlorate. J Chem Soc Chem Comm 1421–1422

    Google Scholar 

  132. Ravnsbæk DB, Filinchuk Y, Černý R, Ley MB, Haase D, Jakobsen HJ, Skibsted J, Jensen TR (2010) Thermal polymorphism and decomposition of Y(BH4)3. Inorg Chem 49:3801–3809

    Article  PubMed  CAS  Google Scholar 

  133. Daly SR, Kim DY, Girolami GS (2012) Lanthanide N, N-dimethylaminodiboranates: Highly volatile precursors for the deposition of lanthanide-containing thin films. Inorg Chem 51:7050–7065

    Article  CAS  PubMed  Google Scholar 

  134. Bradley DC, Ghotra JS, Hart FA (1973) Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J Chem Soc Dalton Trans: 1021–1023

    Google Scholar 

  135. Ghotra, JS, Hursthouse MB, Welch AJ (1973) Three-co-ordinate scandium(III) and europium(III); crystal and molecular structures of their trishexamethyldisilylamides. J Chem Soc Chem Comm: 669–670

    Google Scholar 

  136. Brady ED, Clark DL, Gordon JC, Hay PJ, Keogh DW, Poli R, Scott BL, Watkin JG (2003) Tris(bis(trimethylsilyl)amido)samarium: X-ray structure and DFT study. Inorg Chem 42:6682–6690

    Article  CAS  PubMed  Google Scholar 

  137. Perrin L, Maron L, Eisenstein O, Lappert MF (2003) γ Agostic C-H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand. New J Chem 27:121–127

    Article  CAS  Google Scholar 

  138. Avent AG, Caro CF, Hitchcock PB, Lappert MF, Li Z, Wei XH (2004) Synthetic and structural experiments on yttrium, cerium and magnesium trimethylsilylmethyls and their reaction products with nitriles; with a note on two cerium β-diketiminates. J Chem Soc Dalton Trans 1567–1577

    Google Scholar 

  139. Goodwin CAP, Joslin KC, Lockyer SJ, Formanuik A, Morris GA, Ortu F, Vitorica-Yrezabal IJ, Mills DP (2015) Homoleptic trigonal planar lanthanide complexes stabilized by superbulky silylamide ligands. Organometallics 34:2314–2325

    Article  CAS  Google Scholar 

  140. Eaborn C, Hitchcock PB, Izod K, Smith JD (1994) A monomeric solvent-free bent lanthanide dialkyl and a lanthanide analog of a grignard reagent. Crystal structures of Yb{C(SiMe3)3}2 and [Yb{C(SiMe3)3}I.OEt2]. J Am Chem Soc 116:12071–12072

    Article  CAS  Google Scholar 

  141. Hitchcock PB, Khvostov AV, Lappert MF (2002) Synthesis and structures of crystalline bis(trimethylsilyl)methanidocomplexes of potassium, calcium and ytterbium. J Organomet Chem 663:263–268

    Article  CAS  Google Scholar 

  142. Chilton NF, Goodwin CAP, Mills DP, Winpenny REP (2015) The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. J Chem Soc Chem Comm 51:101–103

    Article  CAS  Google Scholar 

  143. Cotton SA, Hart FA, Hursthouse MB, Welch AJ (1972) Preparation and molecular structure of a σ-bonded lanthanide phenyl. J Chem Soc Chem Comm 1225–1226

    Google Scholar 

  144. Bradley DC, Ghotra JS, Hart FA, Hursthouse MB, Raithby PR (1977) Low co-ordination numbers in lanthanoid and actinoid compounds. Part 2. Syntheses, properties, and crystal and molecular structures of triphenylphosphine oxide and peroxo-derivatives of [bis(trimethylsilyl)-amido]lanthanoids. J Chem Soc Dalton Trans 1166–1172

    Google Scholar 

  145. Hubbard CR, Quicksall CO, Jacobsen RA (1974) A neutron-diffraction study of holmium ethylsulfate enneahydrate by the white-radiation method. Acta Crystallogr B 30:2613–2619

    Article  Google Scholar 

  146. Chatterjee A, Maslen EN, Watson KJ (1988) The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr B 44:381–386

    Article  Google Scholar 

  147. Kurisaki T, Yamaguchi T, Wakita H (1993) Effect of temperature on the structure of hydrated lanthanide(III) ions in crystals and in solution. J Alloys Compd 192:293–295

    Article  CAS  Google Scholar 

  148. Lim KC, Skelton BW, White AH (2000) Structural systematics of rare earth complexes. XXII. (‘Maximally’) hydrated rare earth iodides. Austral J Chem 53:867–873

    Article  CAS  Google Scholar 

  149. Glaser J, Johanson G (1981) Crystal structures of the isomorphous perchlorate hexahydrates of some trivalent metal ions (M = La, Tb, Er, Tl). Acta Chem Scand 35A:639–644

    Article  Google Scholar 

  150. Kepert CJ, Skelton BW, White AH (1994) Structural systematics of rare earth complexes. VII. Crystal structure of bis(2,2′/6′,2-terpyridinium) octaaquaterbium(III) heptachloride hydrate. Austral J Chem 47:391–396

    Article  CAS  Google Scholar 

  151. Huang C, Bian Z (2010) Introduction. In: Huang C (ed) Rare earth coordination chemistry: Fundamentals and applications. Wiley, Singapore, p 18

    Chapter  Google Scholar 

  152. Feng X-Z, Guo A-L, Xu Y-T, Li X-F, Sun P-N (1987) The packing saturation rule and the packing centre rule: Structural characteristics in lanthanide coordination compounds. Polyhedron 6:1041–1048

    Article  CAS  Google Scholar 

  153. Marçalo J, Pires de Matos A (1989) A new definition of coordination number and its use in lanthanide and actinide coordination and organometallic chemistry. Polyhedron 8:2431–2437

    Article  Google Scholar 

  154. Goldschmidt VM, Barth T, Lunde G (1925) Geochemische Verteilungsgesetze der Elemente. Die Lanthaniden-Kontraktion und ihre Konsequenzen, Skrifter Norske Videnskaps-Akademi i. Oslo, Norway, Part V Isomorphie und Polymorphie der Sesquioxyde

    Google Scholar 

  155. D’Angelo P, Spezia R (2012) Hydration of lanthanoids(III) and actinoids(III): An experimental/theoretical saga. Chem Eur J 18:11162–11178

    Article  PubMed  CAS  Google Scholar 

  156. Cotton SA (2005) Establishing co-ordination numbers for the lanthanides. Compt Rend Chimie 8:129–145

    Article  CAS  Google Scholar 

  157. Cotton SA, Raithby PR (2017) Systematics and surprises in lanthanide coordination chemistry. Coord Chem Revs 340:220–231

    Article  CAS  Google Scholar 

  158. Cotton SA, Franckevicius V, Mahon MF, Ooi LL, Raithby PR, Teat SJ (2006) Structures of 2,4,6-tri-α-pyridyl-1,3,5-triazine complexes of the lanthanoid nitrates: A study in the lanthanoid contraction. Polyhedron 25:1057–1068

    Article  CAS  Google Scholar 

  159. Hamilton DC (1965) Position of lanthanum in the periodic table. Amer J Phys 33:637–640

    Article  CAS  Google Scholar 

  160. Merz H, Ulmer K (1967) Position of lanthanum and lutetium in the periodic table. Phys Lett 26A:6–7

    Article  Google Scholar 

  161. Jensen WB (1982) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J Chem Educ 59:634–636

    Article  CAS  Google Scholar 

  162. Lavelle L (2008) Lanthanum (La) and actinium (Ac) should remain in the d-block. J Chem Educ 85:1482–1483

    Article  CAS  Google Scholar 

  163. Jensen WB (2009) Misapplying the periodic law. J Chem Educ 86:1186

    Article  CAS  Google Scholar 

  164. Lavelle L (2009) Response to “misapplying the periodic law”. J Chem Educ 86:1187

    Article  CAS  Google Scholar 

  165. Scerri ER (2009) Which elements belong in group 3? J Chem Educ 86:1188

    Article  CAS  Google Scholar 

  166. Jensen WB (2015) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: An update. Found Chem 17:23–31

    Article  CAS  Google Scholar 

  167. Alvarez S (2020) The transition from 4f to 5d elements from the structural point of view. Cryst Eng Comm. https://doi.org/10.1039/d0ce00029a

    Article  Google Scholar 

  168. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  169. Curnock E, Levason W, Light ME, Luthra SK, McRobbie G, Monzittu FM, Reid G, Williams RN (2018) Group 3 metal trihalide complexes with neutral N-donor ligands—exploring their affinity towards fluoride. J Chem Soc, Dalton Trans 47:6059–6068

    Article  CAS  Google Scholar 

  170. Bambirra S, Meetsma A, Hessen B (2006) Lanthanum tribenzyl complexes as convenient starting materials for organolanthanum chemistry. Organometallics 25:3454–3462

    Article  CAS  Google Scholar 

  171. Meyer N, Roesky PW, Bambirra S, Meetsma A, Hessen B, Saliu K, Takats J (2008) Synthesis and structures of scandium and lutetium benzyl complexes. Organometallics 27:1501–1505

    Article  CAS  Google Scholar 

  172. Saliu KO, Takats J, McDonald R (2018) Crystal structure of tribenzylbis(tetrahydrofuran-κO)lutetium(III). Acta Crystallogr E Crystallogr Commun 74:88–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cotton SA, Harrowfield JM, Raithby PR (2020), manuscript in preparation

    Google Scholar 

  174. Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in methylobacterium radiotolerans. J Biosci Bioeng 111:547–549

    Article  CAS  PubMed  Google Scholar 

  175. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  CAS  PubMed  Google Scholar 

  176. Cotruvo JA, Featherston EA, Mattocks JA, Ho JV, Larmore TN (2018) Lanmodulin: A highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J Am Chem Soc 140:15056–15061

    Article  PubMed  CAS  Google Scholar 

  177. Deblonde GJ-P, Mattocks JA, Park DM, Reed DW, Cotruvo JA, Jiao Y (2020) Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg Chem 59:11855–11867

    Article  CAS  PubMed  Google Scholar 

  178. Cotruvo JA (2019) The chemistry of lanthanides in biology: Recent discoveries, emerging principles, and technological applications. ACS Cent Sci 5:1496–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Daumann LJ (2019) Essential and ubiquitous: The emergence of lanthanide metallobiochemistry. Angew Chem Int Ed 58:12795–12802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the editors, especially Professor Gregory Girolami, for a great deal of assistance during the production of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Cotton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cotton, S.A. (2021). The Rare Earths, a Challenge to Mendeleev, No Less Today. In: Giunta, C.J., Mainz, V.V., Girolami, G.S. (eds) 150 Years of the Periodic Table. Perspectives on the History of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-67910-1_11

Download citation

Publish with us

Policies and ethics