Skip to main content

Pollination Ecology: Natural History, Perspectives and Future Directions

  • Chapter
  • First Online:
Plant-Animal Interactions

Abstract

Pollination is one of the most important plant-animal interactions driving the joint diversification and evolution of seed plants and animals. Typically classified as a mutualistic relationship, pollination indeed can present a myriad of interactions whose outcomes are highly conditional on the costs and benefits of each partner, depending on the morphological and physiological adaptations of the interacting species and the flower resources offered. A floral visitor can act mutualistically as an effective pollinator for one plant, and antagonistically to another plant as a pollen or nectar thief, depending on the associated species in each community and time. Thus, pollination may involve facilitation, commensalism, parasitism, mutualism and a combination of these interactions sometimes in a same system that is entangled in the ecological network. In this chapter we will present a brief history of the origins and evolution of pollination, relevant current knowledge which is a key to understanding the rapid Angiosperm diversification and interactions with animals. Animal pollination will be presented considering human environmental impacts, invasive species, fragmentation and climate change. We conclude by presenting perspectives for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahamczyk S, Kessler M, Hanley D, Karger DN, Müller MPJ, Knauer AC, Keller F, Schwerdtfeger M, Humphreys AM (2017) Pollinator adaptation and the evolution of floral nectar sugar composition. J Evol Biol 30:112–127. https://doi.org/10.1111/jeb.12991

    Article  Google Scholar 

  • Abrahamson WG (1989) Plant-animal interactions: an overview. In: Abrahamson WG (ed) Plant-animal interactions. Mc-Graw-Hill Publishing, New York, pp 1–22

    Google Scholar 

  • Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Syst Evol 222:167–185

    Article  Google Scholar 

  • Alaniz AJ, Carvajal MA, Vergara PM (2020) Giants are coming? Predicting the potential spread and impacts of the giant Asian hornet (Vespa mandarinia, Hymenoptera:Vespidae) in the USA. Pest Manag Sci. https://doi.org/10.1002/ps.6063

  • Alekseev VI, Bukejs A (2017) First fossil representatives of Pharaxonthinae Crowson (Coleoptera: Erotylidae): indirect evidence for cycad existence in Baltic amber forest. Zootaxa 4337:413–422

    Article  Google Scholar 

  • Altshuler DL (2003) Flower color, hummingbird pollination, and habitat irradiance in four Neotropical forests. Biotropica 35:344–355

    Article  Google Scholar 

  • Alves-dos-SantosI MGAR, Rozen JG (2002) Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera: Apidae). Am Mus Novit 3377:1–45. https://doi.org/10.1206/0003-0082(2002)3772.0.CO;2

    Article  Google Scholar 

  • Amorim FW, Wyatt GE, Sazima M (2014) Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil. Naturwissenschaften 101:893–905

    Article  Google Scholar 

  • Anderson WR (1979) Floral conservatism in Neotropical Malpighiaceae. Biotropica 11:219–223

    Article  Google Scholar 

  • Andersson S, Nilsson LAA, Groth I, Bergstroem G (2002) Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot J Linn Soc 140:129–153

    Article  Google Scholar 

  • Anstett MC, Hossaert-McKey M, Kjellberg F (1997) Figs and fig pollinators: evolutionary conflicts in a coevolved mutualism. Trees 12:94–99

    Google Scholar 

  • Appanah S (1993) Mass flowering of dipterocarp forests in the aseasonal tropics. J Biosci 18:457–474

    Article  Google Scholar 

  • Appanah S, Chan HT (1981) Thrips: the pollinators of some Dipterocarps. Malaysian For 44:234–252

    Google Scholar 

  • Armbruster WS (1984) The role of resin in Angiosperm pollination: ecological and chemical considerations. Am J Bot 71:1149–1160

    Article  Google Scholar 

  • Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J (2002) Trichromacy in Australian Marsupials. Curr Biol 12:657–660

    Article  Google Scholar 

  • Assunção MA, Torezan-Silingardi HM, Del-Claro K (2014) Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism? Flora 209:244–249. https://doi.org/10.1016/j.flora.2014.03.003

    Article  Google Scholar 

  • Balducci MG, Niet TVD, Johnson SD (2019) Butterfly pollination of Bonatea cassidea (Orchidaceae): solving a puzzle from the Darwin era. S Afr J Bot 123:308–316

    Article  Google Scholar 

  • Balfour NJ, Garbuzov M, Ratnieks FLW (2013) Longer tongues and swifter handling: why do more bumble bees (Bombus spp.) than honey bees (Apis mellifera) forage on lavender (Lavandula spp.)? Ecol Entomol 38:323–329. https://doi.org/10.1111/een.12019

    Article  Google Scholar 

  • Bänzinger H, Pape T (2004) Flowers, faeces and cadavers: natural feeding and laying habits of flesh flies in Thailand (Diptera: Sarcophagidae, Sarcophaga spp.). J Nat Hist 38:1677–1694

    Article  Google Scholar 

  • Barônio GJ, Torezan-Silingardi HM (2017) Temporal niche overlap and distinct bee ability to collect floral resources on three species of Brazilian Malpighiaceae. Apidologie 48:168–180. https://doi.org/10.1007/s13592-016-0462-6

    Article  Google Scholar 

  • Barônio GJ, Haleem MA, Marsaioli AJ, Torezan-Silingardi HM (2017) Characterization of Malpighiaceae flower-visitor interactions in a Brazilian savannah: how do floral resources and visitor abundance change over time. Flora 234:126–134

    Article  Google Scholar 

  • Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exp Bot 57:3471–3503

    Article  Google Scholar 

  • Benalla DS, Frankston IF (1998) Silverleaf nightshade. In: Landcare Notes LC0227. Department of Natural Resources & Environment, State of Victoria (AU). http://www.dpi.vic.gov.au/

  • Bernays E (1992) Insect-plant interactions, vol IV. CRC Press Taylor & Francis Group

    Google Scholar 

  • Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Article  Google Scholar 

  • Bohman B, Karton A, Dixon RCM, Barrow RA, Peakall R (2016a) Parapheromones for Thynnine Wasps. J Chem Ecol 42:17–23. https://doi.org/10.1007/s10886-015-0660-0

    Article  Google Scholar 

  • Bohman B, Flematti GR, Barrow RA, Pichersky E, Peakall R (2016b) Pollination by sexual deception — it takes chemistry to work. Curr Opin Plant Biol 32:37–46. https://doi.org/10.1016/j.pbi.2016.06.004

    Article  Google Scholar 

  • Bommarco R, Marini L, Vaissière BE (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032. https://doi.org/10.1007/s00442-012-2271-6

    Article  Google Scholar 

  • Borrell BJ (2005) Long tongues and loose niches: evolution of Euglossine bees and their nectar flowers. Biotropica 37:664–669

    Article  Google Scholar 

  • Bowers KAW (1975) The pollination ecology of Solanum rostratum (Solanaceae). Am J Bot 62:633–638

    Article  Google Scholar 

  • Brandon LJ (2005) Weed management in roundup ready flex cotton. MSc Thesis in crop science, Graduate Faculty of Texas Tech University (US)

    Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  Google Scholar 

  • Brown ED, Hopkins MJG (1995) A test of pollinator specificity and morphological convergence between nectarivorous birds and rainforest tree flowers in New Guinea. Oecologia 103:89–100

    Article  Google Scholar 

  • Brown P, Newstrom-Lloyd LE, Foster BJ, Badger PH, McLean JA (2018) Winter 2016 honey bee colony losses in New Zealand. J Apic Res 57:278–291. https://doi.org/10.1080/00218839.2018.1430980

    Article  Google Scholar 

  • Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Syst 18:343–369

    Article  Google Scholar 

  • Cai CY, Escalona HE, Li L-Q, Yin Z-W, Huang D-Y, Engel MS (2018) Beetle pollination of cycads in the Mesozoic. Curr Biol 28:2806–2812

    Article  Google Scholar 

  • Camargo E, Rodrigues LC, Araujo AC (2011) Pollination biology and reproduction of Seemannia sylvatica (Kunth) Hanstein (Gesneriaceae) in the Serra da Bodoquena National Park, Mato Grosso do Sul. Biota Neotrop 11:125–130

    Article  Google Scholar 

  • Campos MGR, Bogdanov S, Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F (2008) Pollen composition and standardisation of analytical methods. J Apic Res 47:154–161. https://doi.org/10.1080/00218839.2008.11101443

    Article  Google Scholar 

  • Cane JH (2016) Adult pollen diet essential for egg maturation by a solitary Osmia bee. J Insect Physiol 95:105–109

    Article  Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology, 2nd edn. Springer, 4346pp

    Google Scholar 

  • Carthew SM, Goldingay RL (1997) Non-flying mammals as pollinators. TREE 12:104–108

    Google Scholar 

  • Carvalho-Filho FS (2010) Scent-robbing and fighting among male orchid bees, Eulaema (Apeulaema) nigrita Lepeletier, 1841 (Hymenoptera: Apidae: Euglossini). Biota Neotrop 10:405–408. http://www.biotaneotropica.org

    Article  Google Scholar 

  • Cesário LF, Gaglianone MC (2013) Pollinators of Schinus terebinthifolius Raddi (Anacardiaceae) in vegetational formations of Restinga in Northern Rio de Janeiro state. Biosci J 29:458–467

    Google Scholar 

  • Chen PJ, Awata H, Matsushita A, Yang EC, Arikawa K (2016) Extreme spectral richness in the eye of the common bluebottle butterfy, Graphium sarpedon. Front Ecol Evol 4:18

    Article  Google Scholar 

  • Chiari WS, Toledo VAA, Ruvolo-Takasusuki MCC et al (2005) Pollination of soybean (Glycine max L. Merril) by honeybees (Apis mellifera L.). Braz Arch Biol Technol 48:31–36

    Article  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  Google Scholar 

  • Chittka L, Thomson JD (eds) (2005) Cognitive ecology of pollination. Cambridge University Press, Cambridge

    Google Scholar 

  • Ciotek L, Giorgis P, Benitez-Vieyra S, Cocucci AA (2006) First confirmed case of pseudocopulation in terrestrial orchids of South America: pollination of Geoblasta pennicillata (Orchidaceae) by Campsomeris bistrimacula (Hymenoptera, Scoliidae). Flora 201:365–369

    Article  Google Scholar 

  • Clemente MA, Lange D, Dáttilo W, Del-Claro K, Prezoto F (2013) Social wasp-flower visiting guild interactions in less structurally complex habitats are more susceptible to local extinction. Sociobiology 60:337–344. https://doi.org/10.13102/sociobiology.v60i3.337-344

    Article  Google Scholar 

  • Cole WS Jr, James AS, Smith CI (2017) First recorded observations of pollination and oviposition behavior in Tegeticula antithetica (Lepidoptera: Prodoxidae) suggest a functional basis for coevolution with Joshua Tree (Yucca) Hosts. Ann Entomol Soc Am 110:390–397. https://doi.org/10.1093/aesa/sax037

    Article  Google Scholar 

  • Cordeiro GD, Pinheiro M, Doetterl S, Alves-dosSantos I (2017) Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. Plant Biol 19:132–139. https://doi.org/10.1111/plb.12520

    Article  Google Scholar 

  • Cox PA (1988) Hydrophilous pollination. Annu Rev Ecol Syst 19:261–279

    Article  Google Scholar 

  • Cox PA (1993) Water-pollinated plants. Sci Am 269:68–74

    Article  Google Scholar 

  • Crane PR (1986) Form and function in wind dispersed pollen. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic, London, pp 179–202

    Google Scholar 

  • Crepet WL (1972) Investigations of North American cycadeoids: pollination mechanisms in Cycadeoidea. Am J Bot 59:1048–1056

    Article  Google Scholar 

  • Crepet WL (1984) Advanced (constant) insect pollination mechanisms: patterns of evolution and implications vis-à-vis angiosperm diversity. Ann Mo Bot Gard 71:607–630

    Article  Google Scholar 

  • Crepet WL, Feldman GD (1991) The earliest remains of grasses in the fossil record. Am J Bot 78:1010–1014

    Article  Google Scholar 

  • Crepet WL, Friis EM, Nixon KC, Lack AJ, Jarzembowski EA (1991) Fossil evidence for the evolution of biotic pollination [and discussion]. Phil Trans R Soc Lond B 333:187–195. https://doi.org/10.1098/rstb.1991.0067

    Article  Google Scholar 

  • Crepet WL, Nixon KC (1996) The fossil history of stamens. In: D’Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, UK, pp 25–57

    Google Scholar 

  • Crepet WL (2008) The fossil record of angiosperms: requiem or renaissance? Ann Mo Bot Gard 95:3–33

    Article  Google Scholar 

  • Cronin TW, Johnsen S, Marshall J, Warrant EJ (2014) Visual Ecology. Princeton University Press.

    Google Scholar 

  • Cronk Q, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:715–727

    Article  Google Scholar 

  • Crowson RA (1981) The biology of the Coleoptera. Academic, London

    Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • Dalsgaard B, Magard E, Fjeldsa J, Martín González AM, Rahbek C et al (2011) Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS One 6:e25891. https://doi.org/10.1371/journal.pone.0025891

    Article  Google Scholar 

  • Danieli-Silva A, Varassin IG (2013) Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation. Plant Spec Biol 28:31–40

    Article  Google Scholar 

  • Daniels RJ, Johnson SD, Peter CI (2020) Flower orientation in Gloriosa superba (Colchicaceae) promotes cross-pollination via butterfly wings. Ann Bot 125:1137–1149. https://doi.org/10.1093/aob/mcaa048

    Article  Google Scholar 

  • Darwin C (1904) Fertilization of orchids, London

    Google Scholar 

  • Daumann E (1959) Zur Kenntnis der Blütennektarien von Aristolochia. Preslia 31:359–372

    Google Scholar 

  • Day S, Beyer R, Mercer A, Ogden S (1990) The nutrient composition of honeybee-collected pollen in Otago, New Zealand. J Apicult Res 29:138–146

    Article  Google Scholar 

  • Del-Claro K, Rodriguez-Morales D, Calixto ES, Martins AS, Torezan-Silingardi HM (2019) Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Ann Bot 123:1159–1165. https://doi.org/10.1093/aob/mcz021

    Article  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2020) In search of unusual interactions. A commentary on: ‘Pollen adaptation to ant pollination: a case study from the Proteaceae’. Ann Bot 126:1–2

    Article  Google Scholar 

  • Delnevo N, Etten EJV, Clemente N, Fogu L, Pavarani E, Byrne M, Stock WD (2020) Pollen adaptation to ant pollination: a case study from the Proteaceae. Ann Bot 126:377–386. https://doi.org/10.1093/aob/mcaa058

    Article  Google Scholar 

  • Delevoryas T (1968) Investigations of North American cycadeoids: structure, ontogeny, and phylognetic considerations of cones of Cycadeoidea. Palaeontographica 21B:122–133

    Google Scholar 

  • Dellinger AS (2020) Pollination syndromes in the 21st century: where do we stand and where may we go? New Phytol. https://doi.org/10.1111/nph.16793

  • Deprá MS, Delaqua GCG, Freitas L, Gaglianone MC (2014) Pollination deficit in open-field tomato crops (Solanum lycopersicum l., Solanaceae) in Rio de Janeiro state, Southeast Brazil. J Poll Ecol 12:1–8

    Article  Google Scholar 

  • de Vega C, Herrera CM, Dötterl S (2014) Floral volatiles play a key role in specialized ant pollination. Perspect Plant Ecol Evol Syst 16:32–42

    Article  Google Scholar 

  • Dobson HEM (2006) Relationship between floral frangrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis, Boca Raton, London, New York, pp 147–198

    Google Scholar 

  • Domingos-Melo A, Nadia TL, Machado IC (2017) Complex flowers and rare pollinators: does ant pollination in Ditassa show a stable system in Asclepiadoideae (Apocynaceae)? Arthropod Plant Interact 11:339–349

    Article  Google Scholar 

  • Dormann C (2011) How to be a specialist? Quantifying specialisation in pollination networks. Net Biol 1:1–20

    Google Scholar 

  • Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci 40:301–326. https://doi.org/10.1146/annurev-earth-042711-105313

    Article  Google Scholar 

  • Dressler R (1981) Orchids – natural history and classification, 1st edn. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod Plant Interact 1:45–55

    Article  Google Scholar 

  • Ehrlich P, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Erbar C (2014) Nectar secretion and nectaries in basal angiosperms, magnoliids and non-core eudicots and a comparison with core eudicots. Plant Diver Evol 131:63–143

    Article  Google Scholar 

  • Faegri K, van der Pijl (1979) The principles of pollination ecology. 3rd revised ed. Pergamon Press, Oxford, New York

    Google Scholar 

  • Faurot-Daniels C, Glenny W, Daughenbaugh KF, McMenamin AJ, Burkle LA, Flenniken ML (2020) Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS One 15:e0237544. https://doi.org/10.1371/journal.pone.0237544

    Article  Google Scholar 

  • Ferreira CA, Torezan-Silingardi HM (2013) Implications of the floral herbivory on Malpighiacea plant fitness: visual aspect of the flower affects the attractiveness to pollinators. Sociobiology 60:323–328. https://doi.org/10.13102/sociobiology.v60i3.323-328

    Article  Google Scholar 

  • Fiala B, Meyer U, Hashim R, Maschwitz U (2011) Pollination systems in pioneer trees of the genus Macaranga (Euphorbiaceae) in Malaysian rainforests. Biol J Linn Soc 103:935–953

    Article  Google Scholar 

  • Fleming PA, Nicolson SW (2002) How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators? Oecologia 132:361–368. https://doi.org/10.1007/s00442-002-0921-9

    Article  Google Scholar 

  • Fleming TH, Muchhala N (2008) Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. Journal of Biogeography (J. Biogeogr.) (2008) 35, 764–780.

    Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043

    Article  Google Scholar 

  • Freitas L, Sazima M (2009) Floral biology and mechanisms of spontaneous self-pollination in five neotropical species of Gentianaceae. Bot J Linn Soc 160:357–368. https://doi.org/10.1111/j.1095-8339.2009.00989.x

    Article  Google Scholar 

  • Freitas LS, Moreira LM, de Avila RS, Felestrino ÉB, Demarco D, de Sousa HC, Ribeiro SP (2017) Reproductive phenology and floral visitors of a Langsdorffia hypogaea (Balanophoraceae) population in Brazil. Flora 233:51–57. https://doi.org/10.1016/j.flora.2017.02.023

    Article  Google Scholar 

  • Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the Angiosperms. Int J Plant Sci 169:49–58

    Article  Google Scholar 

  • Friedman WE (2009) The meaning of Darwin’s “abominable mystery”. Am J Bot 96:5–21

    Article  Google Scholar 

  • Fröhlich MW (2003) An evolutionary scenario for the origin of flowers. Nat Rev Genet 4:559–566

    Article  Google Scholar 

  • Funamoto D (2019) Precise sternotribic pollination by settling moths in Adenophora maximowicziana (Campanulaceae). Int J Plant Sci 180:200–208

    Article  Google Scholar 

  • Garratt MPD, Breeze TD, Jenner M, Polcec C, Biesmeijer JC, Potts SG (2014) Avoiding a bad apple: insect pollination enhances fruit quality and economic value. Agric Ecosyst Environ 184:34–40

    Article  Google Scholar 

  • Gemmill-Herren B, Ochieng AO (2008) Role of native bees and natural habitats in eggplant (Solanum melongena) pollination in Kenya. Agric Ecosyst Environ 127:31–36

    Article  Google Scholar 

  • Goldblatt P, Manning JC (2000) The long-proboscid fly pollination system in Southern Africa. Ann Mo Bot Gard 87:146–170

    Article  Google Scholar 

  • Gonçalves-Souza P, Schlindwein C, Paiva EAS (2018) Floral resins of Philodendron adamantinum (Araceae): secretion, release and synchrony with pollinators. Acta Botanica Brasilica 32:392–401. https://doi.org/10.1590/0102-33062018abb0115

    Article  Google Scholar 

  • González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F (2020) Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. https://doi.org/10.1111/brv.12588

  • Goodrich KR (2012) Floral scent in Annonaceae. Bot J Linn Soc 169:262–279

    Article  Google Scholar 

  • Gottsberger G (1977) Some aspects of beetle pollination in the evolution of flowering plants. Plant Syst Evol Suppl 1:211–226

    Google Scholar 

  • Gottsberger G, Amaral A Jr (1984) Pollination strategies in Brazilian Philodendron species. Ber deutsch Bot Ges Bd 97:391–410

    Google Scholar 

  • Gottsberger G (1986) Some pollination strategies in Neotropical savannas and forests. Plant Syst Evol 152:29–45

    Article  Google Scholar 

  • Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Syst Evol 167:165–187

    Article  Google Scholar 

  • Gottsberger G (1999) Pollination and evolution in Neotropical Annonaceae. Plant Spec Biol 14:143–152

    Article  Google Scholar 

  • Gottsberger G (2016) Generalist and specialist pollination in basal angiosperms (ANITA grade, basal monocots, magnoliids, Chloranthaceae and Ceratophyllaceae): what we know now. Plant Diver Evol 131:263–362

    Article  Google Scholar 

  • Goulson D, Cory JS (1993) Flower constancy and learning in foraging preferences of the green-veined white butterfly Pieris napi. Ecol Entomol 18:315–320

    Article  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  Google Scholar 

  • Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the cretaceous. Ann Mo Bot Gard 86:373–406

    Article  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Gullan PJ, Cranston PS (1994) The insects: an outline of entomology. Chapman & Hall. 491p

    Google Scholar 

  • Hagerup E, Hagerup O (1953) Thrips pollination of Erica tetralix. New Phytol 52:1–7

    Article  Google Scholar 

  • Hargreaves AL, Johnson SD, Nol E (2004) Do floral syndromes predict specialization in plant pollination systems? An experimental test in an “ornithophilous” African Protea. Oecologia 140:295–301. https://doi.org/10.1007/s00442-004-1495-5

    Article  Google Scholar 

  • Hart NS, Hunt DM (2007) Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat 169:S7–S26. https://www.jstor.org/stable/10.1086/510141

    Article  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200. https://doi.org/10.1016/j.tplants.2011.01.003

    Article  Google Scholar 

  • Helversen DV, Helversen OV (1999) Acoustic guide in bat-pollinated flower. Nature 398:795–796

    Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the Angiosperm stigma. Ann Bot 41:1233–1258

    Article  Google Scholar 

  • Hickman JC (1974) Pollination by ants: a low-energy system. Science 184:1290–1292

    Article  Google Scholar 

  • Hipólito J, Boscolo D, Viana BF (2018) Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agric Ecosyst Environ 256:218–225

    Article  Google Scholar 

  • Hoffman JH, Moran VC, Impson FAC (1998) Promising results from the firrst biological control programme against a solanaceous weed (Solanum elaeagnifolium). Agric Ecosyst Environ 70:145–150

    Article  Google Scholar 

  • Hogan JD, Melin AD, Mosdossy KN, Fedigan LM (2016) Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): implications for plant and primate. Am J Phys Anthropol 161:591–602. https://doi.org/10.1002/ajpa.23059

    Article  Google Scholar 

  • Holloway BA (1976) Pollen-feeding in hover-flies (Diptera: Syrphidae). N Z J Zool 3:339–350

    Article  Google Scholar 

  • Hong JR, Joo MJ, Hong MH, Jo SJ, Kim KJ (2014) Solanum elaeagnifolium Cav. (Solanaceae), an unrecorded naturalized species of Korean flora. Korean J Plant Taxon 44:18–21. https://doi.org/10.11110/kjpt.2014.44.1.18

    Article  Google Scholar 

  • Hu S, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm–pollinator coevolution. PNAS 105:240–245. https://doi.org/10.1073/pnas.0707989105

    Article  Google Scholar 

  • Huber H (1993) Aristolochiaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants II:129–137. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Hudewenz A, Pufal G, Bögeholz AL, Klein AM (2013) Cross-pollination benefits differ among oilseed rape varieties. J Agric Sci. https://doi.org/10.1017/S0021859613000440

  • Huth CJ, Pellmyr O (2000) Pollen-mediated selective abortion in Yuccas and its consequences for the plan-pollinator mutualism. Ecology 81:1100–1107

    Google Scholar 

  • Inouye DW, Larson BMH, SSymank A, Kevan PG (2015) Flies and flowers III: ecology of foraging and pollination. J Poll Ecol 16:115–133

    Article  Google Scholar 

  • IPBES (2016) The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT (eds) Secretariat of the intergovernmental science-policy platform on biodiversity and ecosystem services, Bonn. 552p

    Google Scholar 

  • Irwin MT, Raharison FJ, Rakotoarimanana H, Razanadrakoto E, Ranaivoson E, Rakotofanala J, Randrianarimanana C (2007) Diademed sifakas (Propithecus diadema) use olfaction to forage for the inflorescences of subterranean parasitic plants (Balanophoraceae: Langsdorffia sp., and Cytinaceae: Cytinus sp.). Am J Primatol 69:471–476. https://doi.org/10.1002/ajp.20353

    Article  Google Scholar 

  • Ishara KL, Maimoni-Rodella RCS (2011) Pollination and dispersal systems in a Cerrado remnant (Brazilian Savanna) in Southeastern Brazil. Braz Arch Biol Technol 54:629–642

    Article  Google Scholar 

  • Ishida C, Kono M, Sakai S (2009) A new pollination system: brood-site pollination by flower bugs in Macaranga (Euphorbiaceae). Ann Bot 103:39–44. https://doi.org/10.1093/aob/mcn212

    Article  Google Scholar 

  • Jansen-González S, Teixeira SP, Pereira RAS (2012) Mutualism from the inside: coordinated development of plant and insect in an active pollinating fig wasp. Arthropod Plant Interact 6:601–609

    Article  Google Scholar 

  • Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235. https://doi.org/10.1017/S1464793105006986

    Article  Google Scholar 

  • Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53

    Article  Google Scholar 

  • Johnson JD, Liltved WR (1997) Hawkmoth pollination of Bonatea speciosa (Orchidaceae) in a South African coastal forest. Nord J Bot 16:5–10

    Article  Google Scholar 

  • Johst K, Drechsler M, Thomas J, Settele J (2006) Influence of moving on the persistence of two endangered large blue butterfly species. J Appl Ecol 43:333–342

    Article  Google Scholar 

  • Jürgens A, Webber AC, Gottsberger G (2000) Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–558

    Article  Google Scholar 

  • Kato M, Inouye T (1994) Origin of insect pollination. Science 368:195

    Google Scholar 

  • Kato M, Takimura A, Kawakita A (2003) An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). PNAS 100:5264–5267. https://doi.org/10.1073/pnas.0837153100

    Article  Google Scholar 

  • Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Midl Nat 127:172–182

    Article  Google Scholar 

  • Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5. (Online) URL: http://www.consecol.org/vol5/iss1/art5

  • Kelly TT, Elle E (2020) Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability? Insect Sci 00:1–11. https://doi.org/10.1111/1744-7917.12785

    Article  Google Scholar 

  • Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationships of early terrestrial arthropods and plants. Palaeontology 18:391–417

    Google Scholar 

  • Kinoshita M, Stewart FJ, Omura H (2017) Multisensory integration in Lepidoptera: insights into flower-visitor interactions. BioEssays 39:1600086. https://doi.org/10.1002/bies.201600086

    Article  Google Scholar 

  • Klavins SD, Kellogg DW, Krings M, Taylor EL, Taylor TN (2005) Coprolites in a middle triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol Ecol Res 7:479–488

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Knuth P (1898) Handbuch der Blütenbiologie. Band 1: Einleitung und Litteratur. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Kondo T, Nishimura S, Tani N, Ng KKS, Lee SL, Muhammad N, Okuda T, Tsumura Y, Isagi Y (2016a) Complex pollination of a tropical Asian rainforest canopy tree by flower-feeding thrips and thrips-feeding predators. Am J Bot 103:1912–1920

    Article  Google Scholar 

  • Kondo T, Otani T, Lee SL, Tani N (2016b) Pollination system of Shorea curtisii, a dominant species in hill dipterocarp forests. J Trop For Sci 28:318–323

    Google Scholar 

  • Koopman KF (1981) The distributional patterns of New World nectar-feeding bats. Ann Mo Bot Gard 68:352–369

    Article  Google Scholar 

  • Kozub C, Barboza K, Galdeano F, Quarin CL, Cavagnaro JB, Cavagnaro PF (2017) Reproductive biology of the native forage grass Trichloris crinita (Poaceae, Chloridoideae). Plant Biol 19:444–453

    Article  Google Scholar 

  • Krahl AH, Holanda ASS, Krahl DRP, Martucci MEP, Gobbo-Neto L, Webber AC, Pansarin ER (2019) Study of the reproductive biology of an Amazonian Heterotaxis (Orchidaceae) demonstrates the collection of resin-like material by stingless bees. Plant Syst Evol 305:281–291. https://doi.org/10.1007/s00606-019-01571-9

    Article  Google Scholar 

  • Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD (2017) Novel consequences of bird pollination for plant mating. Trends Plant Sci 22:395–410. https://doi.org/10.1016/j.tplants.2017.03.005

    Article  Google Scholar 

  • Kugler H (1955) Zum Problem der Dipterenblumen. Österreichische Botanische Zeitschrift 102:529–541

    Article  Google Scholar 

  • Kuhlmann M, Hollens H (2014) Morphology of oil-collecting pilosity of female Rediviva bees (Hymenoptera: Apoidea: Melittidae) reflects host plant use. J Nat Hist 49:561–657

    Article  Google Scholar 

  • Kullenberg B (1950) Investigations on the pollination of Ophrys species. Oikos 2:1–19

    Article  Google Scholar 

  • Kunz TH, Torrez EB, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x

    Article  Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  Google Scholar 

  • Labandeira CC (1998) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377

    Article  Google Scholar 

  • Labandeira CC, Yang Q, Santiago-Blay JA, Hotton CL, Monteiro A, Wang YJ, Goreva Y, Shih C, Siljeström S, Rose TR et al (2016) The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proc Biol Sci 283:20152893

    Google Scholar 

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465

    Article  Google Scholar 

  • Lázaro A, Fuster F, Alomar D, Totland Ø (2020) Disentangling direct and indirect effects of habitat fragmentation on wild plants' pollinator visits and seed production. Ecol Appl 30(5):e02099

    Article  Google Scholar 

  • Li P, Luo YB, Bernhardt P, Yang XQ, Kou Y (2006) Deceptive pollination of the Lady's Slipper Cypripedium tibeticum (Orchidaceae). Plant Syst Evol 262:53–63

    Article  Google Scholar 

  • Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA et al (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5:461–470. https://doi.org/10.1038/s41477-019-0421-0

    Article  Google Scholar 

  • Lindström SAM, Herbertsson L, Rundlöf M, Smith HG, Bommarco R (2015) Large-scale pollination experiment demonstrates the importance of insect pollination in winter oilseed rape. Oecologia. https://doi.org/10.1007/s00442-015-3517-x

  • Lloyd DG, Wells MS (1992) Reproductive biology of a primitive angiosperm, Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta Pl. Syst Evol 181:77–95

    Article  Google Scholar 

  • Lomáscolo SB, Giannini N, Chacoff NP, Castro-Urgal R, Vázquez DP (2019) Inferring coevolution in a plant–pollinator network. Oikos 128:775–789. https://doi.org/10.1111/oik.05960

    Article  Google Scholar 

  • Lunau K, Hofmann N, Valentin S (2005) Response of the hoverfly species Eristalis tenax towards floral dot guides with colour transition from red to yellow (Diptera : Syrphidae). Entomol Gen 27:249–256

    Article  Google Scholar 

  • Lunau K (2014) Visual ecology of flies with particular reference to colour vision and colour preferences. J Comp Physiol A. https://doi.org/10.1007/s00359-014-0895-1

  • Luo Y-B, Li Z-Y (1999) Pollination ecology of Chloranthus serratus (Thunb.) Roem. et Schult. and Ch. fortunei (A. Gray) Solms-Laub. (Chloranthaceae). Ann Bot 83:489–499

    Article  Google Scholar 

  • Kraaij M, van der Kooi C (2020) Surprising absence of association between flower surface microstructure and pollination system. Plant Biol 22:177–183. https://doi.org/10.1111/plb.13071

    Article  Google Scholar 

  • Maia ACD, Dötterl S, Kaiser R, Silberbauer-Gottsberger I, Teichert H, Gibernau M, Navarro DMAF, Schlindwein C, Gottsberger G (2012) The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J Chem Ecol 38:1072–1080

    Google Scholar 

  • Manning JC, Goldblatt P (1997) The Moegistorhynchus longirostris (Diptera: Nemestrinidae) pollination guild: long-tubed flowers and a specialized long-proboscid fly pollination system in southern Africa. Plant Syst Evol 206:51–69

    Article  Google Scholar 

  • Marquínez X, Cepeda J, Lara K, Sarmiento R (2010) Arañas asociadas a la floración de Drimys granadensis (Winteraceae). Revista Colombiana de Entomología 36:172–175

    Article  Google Scholar 

  • Martel C, Francke W, Ayasse M (2019) The chemical and visual bases of the pollination of the Neotropical sexually deceptive orchid Telipogon peruvianus. New Phytol 223:1989–2001. https://doi.org/10.1111/nph.15902

    Article  Google Scholar 

  • Martin ALB, O'Hanlon JC, Gaskett AC (2020) Orchid sexual deceit affects pollinator sperm transfer. Funct Ecol 00:1–9. https://doi.org/10.1111/1365-2435.13551

    Article  Google Scholar 

  • Matsuura M (1984) Comparative biology of the five Japanese species of the genus Vespa. Bull Fac Agr Mie Univ 69:1–132

    Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. https://doi.org/10.1111/j.1461-0248.2006.00975.x

    Article  Google Scholar 

  • Mekki M (2007) Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). Bull OEPP/EPPO 37:114–118

    Article  Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, 404 p

    Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins University Press, Baltimore

    Book  Google Scholar 

  • Minghetti E, Olivera L, Montemayor SI (2019) Ecological niche modelling of Gargaphia decoris (Heteroptera), a biological control agent of the invasive tree Solanum mauritianum (Solanales: Solanaceae). Pest Manag Sci. https://doi.org/10.1002/ps.5637

  • Mody K, Lerch D, Müller A-K, Simons NK, Blüthgen N, Harnisch M (2020) Flower power in the city: replacing roadside shrubs by wildflower meadows increases insect numbers and reduces maintenance costs. PLoS One 15(6):e0234327. https://doi.org/10.1371/journal.pone.0234327

    Article  Google Scholar 

  • Momose K, Nagamitsu T, Inoue T (1998) Thrips cross-pollination of Popowia pisocarpa (Annonaceae) in a lowland dipterocarp forest in Sarawak. Biotropica 30:444–448

    Article  Google Scholar 

  • Moseley FY (1898) What is a flower? Asa Gray Bull 6:9–11

    Google Scholar 

  • Mound LA, Marullo R (1996) The thrips of Central and South America: an introduction. Mem Entomol Int 6:1–488

    Google Scholar 

  • Moyroud E, Glover BJ (2017) The physics of pollinator attraction. New Phytol 216:350–354. https://doi.org/10.1111/nph.14312

    Article  Google Scholar 

  • Müller H (1881) Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassungen an dieselben. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Murugan R, Shivanna KR, Rao RR (2006) Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Curr Sci 91:795–798

    Google Scholar 

  • Nabozhenko MV (2019) The fossil record of Darkling Beetles (Insecta: Coleoptera: Tenebrionidae). Geosciences 9:514. https://doi.org/10.3390/geosciences9120514

    Article  Google Scholar 

  • Natural Research Council (2006) Status of pollinators in North America. National Academic Press, Washinton

    Google Scholar 

  • Neff JL, Simpson BB (1981) Oil-collecting structures in the Anthophoridae (Hymenoptera): morphology, function and use in systematics. Journal of Kansas Entomological Society 54:95–123.

    Google Scholar 

  • Neff JL, Simpson BB (2017) Vogel’s great legacy: the oil flower and oil-collecting bee syndrome. Flora 232:104–116

    Article  Google Scholar 

  • Neumüller U, Burger H, Krausch S, Bluthgen N, Ayasse M (2020) Interactions of local habitat type, landscape composition and flower availability moderate wild bee communities. Landsc Ecol 35:2209–2224

    Article  Google Scholar 

  • Nicolson SW (2011) Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. Afr Zool 46:197–204

    Article  Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, Chicago

    Google Scholar 

  • Novais SMA, Nunes CA, Santos NB et al (2016) Effects of a possible pollinator crisis on food crop production in Brazil. PLoS One 11:e0167292. https://doi.org/10.1371/journal.pone.0167292

    Article  Google Scholar 

  • Nunes CEP, Peñaflor MFGV, Bento JMS, Salvador MJ, Sazima M (2016) The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula. Oecologia 182:933–946. https://doi.org/10.1007/s00442-016-3703-5

    Article  Google Scholar 

  • Nunes-Silva P, Hrncir M, Silva CI, Roldão YS, Imperatriz-Fonseca VL (2013) Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie. https://doi.org/10.1007/s13592-013-0204-y

  • Nyman T, Onstein RE, Silvestro D, Wutke S, Taeger A, Wahlberg N et al (2019) The early wasp plucks the flower: Disparate extant diversity of sawfly superfamilies (Hymenoptera: 'Symphyta') may reflect asynchronous switching to angiosperm hosts. Biol J Linn Soc 14:128. https://doi.org/10.1093/biolinnean/blz071

    Article  Google Scholar 

  • Oelschlägel B, Nuss M, von Tschirnhaus M, Pätzold C, Neinhuis C, Dötterl S, Wanke S (2015) The betrayed thief – the extraordinary strategy of Aristolochia rotunda to deceive its pollinators. New Phytol 206:342–351

    Google Scholar 

  • Ogilvie JE, Thomson JD (2016) Site fidelity by bees drives pollination facilitation in sequentially blooming plant species. Ecology 97:1442–1451

    Article  Google Scholar 

  • Oliveira CMA, Porto AM, Bittrich V, Vencato I, Marsaioli AJ (1996) Floral resins of Clusia spp.: chemical composition and biological function. Tetrahedron Lett 37:6427–6430

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Ollerton J, Coulthard E (2009) Evolution of animal pollination. Science 326:808–809

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

    Article  Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376

    Article  Google Scholar 

  • Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181

    Article  Google Scholar 

  • Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, Irwin RE, Stevenson PC (2018) Chemistry of floral rewards: intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol Monograph 0:1–20. e01335. https://doi.org/10.1002/ecm.1335

    Article  Google Scholar 

  • Parachnowitsch AL, Manson JS, Sletvold N (2019) Evolutionary ecology of nectar. Ann Bot 123:247–261. https://doi.org/10.1093/aob/mcy132

    Article  Google Scholar 

  • Paulus HF, Gack C (1990) Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys. Israel J Bot 39:43–79

    Google Scholar 

  • Payne WW (1981) Structure and function in angiosperm pollen wall evolution. Rev Palaeobot Palynol 35:39–59

    Article  Google Scholar 

  • Peakall R, Schiestl FP (2004) A mark-recapture study of male Colletes cunicularius bees: implications for pollination by sexual deception. Behav Ecol Sociobiol 56:579–584

    Article  Google Scholar 

  • Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP (2010) Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytol 188:437–450. https://doi.org/10.1111/j.1469-8137.2010.03308.x

    Article  Google Scholar 

  • Pellmyr O (2003) Yuccas, yucca moths and coevolution: a review. Ann Missouri Bot Gard 90:35–55

    Article  Google Scholar 

  • Pellmyr O, Segraves KA (2003) Pollinator divergence within an obligate mutualism: two yucca moth species (Lepidoptera; Prodoxidae: Tegeticula) on the Joshua Tree (Yucca brevifolia; Agavaceae). Ann Entomol Soc Am 96:716–722

    Article  Google Scholar 

  • Peñalver E, Labandeira CC, Barrón E, Delclòs X, Nel P, Nel A, Tafforeau P, Soriano C (2012) Thrips pollination of Mesozoic gymnosperms. Proc Natl Acad Sci U S A 109:8623–8628

    Article  Google Scholar 

  • Peñalver E, Arillo A, Perez-de la Fuente R, Riccio ML, Delclòs X, Barrón E, Grimaldi DA (2015) Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr Biol 25:1917–1923

    Article  Google Scholar 

  • Pereira J, Schlindwein C, Antonini Y, Maia ACD, Dötterl S, Martins C, Navarro DMAF, Oliveira R (2014) Philodendron adamantinum (Araceae) lures its single cyclocephaline scarab pollinator with specific dominant floral scent volatiles. Biol J Linn Soc 111:679–691

    Article  Google Scholar 

  • Peris D, Fuente RP, Peñalver E, Delclòs X, Barrón E, Labandeira CC (2017a) False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr Biol 27:1–8. https://doi.org/10.1016/j.cub.2017.02.009

    Article  Google Scholar 

  • Peris D, Labandeira CC, Peñalver E, Delclòs X, Barrón E, Fuente RP (2017b) The case of Darwinylus marcosi (Insecta: Coleoptera: Oedemeridae): a cretaceous shift from a gymnosperm to an angiosperm pollinator mutualism. Commun Integr Biol 10(4):e1325048. https://doi.org/10.1080/19420889.2017.1325048

    Article  Google Scholar 

  • Peris D, Perez-de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC (2017c) False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr Biol 27:897–904

    Article  Google Scholar 

  • Phillips RD, Brown GR, Dixon KW, Hayes C, Linde CC, Peakall R (2017) Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids. J Evol Biol 30:1674–1691. https://doi.org/10.1111/jeb.13125

    Article  Google Scholar 

  • Poinar G Jr (2016) Beetles with orchid pollinaria in Dominican and Mexican amber. Am Entomol 62:172–177. https://doi.org/10.1093/ae/tmw055

    Article  Google Scholar 

  • Possobom CCF, Machado SR (2017) Elaiophores: their taxonomic distribution, morphology and functions. Acta Botanica Brasilica 31:503–524. https://doi.org/10.1590/0102-33062017abb0088

    Article  Google Scholar 

  • Potgieter CJ, Edwards TJ (2005) The Stenobasipteron wiedemanni (Diptera, Nemestrinidae) pollination guild in eastern Southern Africa. Ann Mo Bot Gard 92:254–267

    Google Scholar 

  • Potts SG, Roberts SP, Dean R, Marris G, Brown M, Jones R, Neumann P, Settele J (2010) Declines of managed honeybees and beekeepers in Europe? J Apic Res 49:15–22

    Article  Google Scholar 

  • Powell JA, Mackie RA (1966) Biological interrelationships of moths and Yucca whipplei (Lepidoptera: Gelechiidae, Blastobasidae, Prodoxidae). Univ Calif Publ Entomol 42:1–46

    Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conserv Biol 4:365–374

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins Publishers, London. 479 pp.

    Google Scholar 

  • Pyke GH (2016) Floral nectar: pollinator attraction or manipulation? Trends Ecol Evol 31:339–341

    Article  Google Scholar 

  • Quirino ZGM, Machado IC (2014) Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits. Br J Biol 74:62–71. https://doi.org/10.1590/1519-6984.17212

    Article  Google Scholar 

  • Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci U S A 113:146–151

    Article  Google Scholar 

  • Raguso RA (2004) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440

    Article  Google Scholar 

  • Raguso RA (2020) Don't forget the flies: dipteran diversity and its consequences for floral ecology and evolution. Appl Entomol Zool 55:1–7

    Article  Google Scholar 

  • Raju AJS, Raju PS, Ramana KV (2014) Mellitophily and malacophily in Ipomoea pes-caprae (Convolvulaceae). Taprobanica 6:90–99

    Article  Google Scholar 

  • Rathcke BJ (2000) Hurricane causes resource and pollination limitation of fruit set in a bird-pollinated shrub. Ecology 81:1951–1958

    Article  Google Scholar 

  • Ratnayake RMCS, Gunatilleke IAUN, Wijesundara DSA, Saunders RMK (2006) Reproductive biology of two sympatric species of Polyalthia (Annonaceae) in Sri Lanka. I. Pollination by curculionid beetles. Int J Plant Sci 167:483–493

    Article  Google Scholar 

  • Ratnayake RMCS, Gunatilleke IAUN, Wijesundara DSA, Saunders RMK (2007) Pollination ecology and breeding system of Xylopia championii (Annonaceae): curculionid beetle pollination, promoted by floral scents and elevated floral temperatures. Int J Plant Sci 168:1255–1268

    Article  Google Scholar 

  • Ratto F, Simmons BI, Spake R, Zamora-Gutierrez V, MacDonald MA, Merriman JC, Tremlett CJ, Poppy GM, Peh KS-H, Dicks LV (2018) Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front Ecol Environ. https://doi.org/10.1002/fee.1763

  • Rech AR, Dalsgaard B, Sandel B, Sonne J, Svenning JC, Holmes N, Ollerton J (2016) The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecol Diver 9:253–262. https://doi.org/10.1080/17550874.2016.1207722

    Article  Google Scholar 

  • Regal PJ (1982) Pollination by wind and animals: ecology of geographic patterns. Annu Rev Ecol Syst 13:497–524

    Article  Google Scholar 

  • Reis MG, Singer RB, Gonçalves R, Marsaioli AJ (2006) The chemical composition of Phymatidium delicatulum and P. tillandsioides (Orchidaceae) floral oils. Nat Prod Commun 1:757–761

    Google Scholar 

  • Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih C, Bashkuev A, Logan MAV, Hotton CL, Dilcher D (2009) A probable pollination mode before Angiosperms: Eurasian, long-proboscid Scorpionflies. Science 326(5954):840–847. https://doi.org/10.1126/science.1178338

    Article  Google Scholar 

  • Rigotto RM, Vasconcelos DP, Rocha MM (2014) Pesticide use in Brazil and problems for public health. Cad Saude Publ 30:1360–1362

    Article  Google Scholar 

  • Rios LD, Fuchs EJ, Hodel DR, Cascante-Marín A (2003) Neither insects nor wind: ambophily in dioecious Chamaedorea palms (Arecaceae). Plant Biol. https://doi.org/10.1111/plb.12119

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400. https://doi.org/10.1111/ele.12224

    Article  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York. Tropical Biology Series

    Book  Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interaction, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Rydin C, Bolinder K (2015) Moonlight pollination in the gymnosperm Ephedra (Gnetales). Biol. Lett. 11: 20140993. http://dx.doi.org/10.1098/rsbl.2014.0993

  • Sakamoto RL, Ito M, Kawakubo N (2012) Contribution of pollinators to seed production as revealed by differential pollinator exclusion in Clerodendrum trichotomum (Lamiaceae). PLoS One 7(3):e33803. https://doi.org/10.1371/journal.pone.0033803

    Article  Google Scholar 

  • Santos GMM, Aguiar CML, Mello MAR (2010) Flower-visiting guild associated with the Caatinga flora: trophic interaction networks formed by social bees and social wasps with plants. Apidologie 41:466–475. https://doi.org/10.1051/apido/2009081

    Article  Google Scholar 

  • Santos JC, Nascimento ART, Marzinek J, Leiner N, Oliveira PE (2017) Distribution, host plants and floral biology of the root holoparasite Langsdorffia hypogaea in the Brazilian savannah. Flora 226:65–71. https://doi.org/10.1016/j.flora.2016.11.008

    Article  Google Scholar 

  • Saunquet H, von Balthazar M, Magallón S et al (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047. https://doi.org/10.1038/ncomms16047

    Article  Google Scholar 

  • Saunders RMK (2012) The diversity and evolution of pollination systems in Annonaceae. Bot J Linn Soc 169:222–244

    Article  Google Scholar 

  • Sawea T, Nielsenb A, Totlandc Ø, Macriced S, Eldegard K (2020) Inadequate pollination services limit watermelon yields in northern Tanzania. Basic Appl Ecol 44:35–45

    Article  Google Scholar 

  • Sazima M, Sazima I (1978) Bat pollination of the passion flower, Passiflora mucronata, in Southeastern Brazil. Biotropica 10:100–109

    Article  Google Scholar 

  • Sazima I, Sazima C, Sazima M (2005) Little dragons prefer flowers to maidens: a lizard that laps nectar and pollinates trees. Biota Neotropica 5:185–192. https://doi.org/10.1590/S1676-06032005000100018

    Article  Google Scholar 

  • Sazima I, Sazima C, Sazima M (2009) A catch-all leguminous tree: Erythrina velutina visited and pollinated by vertebrates at an oceanic island. Aust J Bot 57:26–30

    Article  Google Scholar 

  • Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534

    Article  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438. https://doi.org/10.1126/science.1087835

    Article  Google Scholar 

  • Schnaitmann C, Pagni M, Reiff DF (2020) Color vision in insects: insights from Drosophila. J Comp Physiol A. https://doi.org/10.1007/s00359-019-01397-3

  • Schowalter TD (2000) Insect ecology: an ecosystem approach. Academic, San Diego, 483 pp

    Google Scholar 

  • Seymour RS (2010) Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. Plant Cell Environ 33:474–1485

    Google Scholar 

  • Seymour RS, Schultze-Motel P (1997) Heat-producing flowers. Endeavour 21:125–129

    Article  Google Scholar 

  • Shrestha M, Lunau K, Dorin A, Schulze B, Bischo M, Burd M, Dyer AG (2016) Floral colours in a world without birds and bees: the plants of Macquarie Island. Plant Biol. https://doi.org/10.1111/plb.12456

  • Shuttleworth A, Johnson SD (2009) The importance of scent and nectar filters in a specialized wasp-pollination system. Funct Ecol 23:931–940. https://doi.org/10.1111/j.1365-2435.2009.01573.x

    Article  Google Scholar 

  • Shuttleworth A, Johnson SD (2010) The missing stink: sulphur compounds can mediate a shift between fly and wasp pollination systems. Proc R Soc B 277:2811–2819. https://doi.org/10.1098/rspb.2010.0491

    Article  Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G (1988) A polinização de plantas do cerrado. Braz J Biol 48:651–663

    Google Scholar 

  • Silberbauer-Gottsberger I (1990) Pollination and evolution in palms. Phyton (Horn, Austria) 30:213–233

    Google Scholar 

  • Silva AC, Kinupp VF, Absy ML, Ferr WE (2004) Pollen morphology and study of the visitors (Hymenoptera, Apidae) of Solanum stramoniifolium Jacq. (Solanaceae) in Central Amazon. Acta Botanica Brasilica 18:653–657

    Article  Google Scholar 

  • Simão S (1998) Tratado de fruticultura. FEALQ, Piracicaba, 760p

    Google Scholar 

  • Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Mo Bot Gard 68:301–322

    Article  Google Scholar 

  • Smyth DR (2018) Evolution and genetic control of the floral ground plan. New Phytologist (2018) 220:70–86. https://doi.org/10.1111/nph.15282

  • Sonne J et al (2020) Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proc R Soc B 287:20192873

    Article  Google Scholar 

  • Southwick EE (1985) Bee hair structure and the effect of hair on metabolism at low temperature. J Apic Res 24:44–149. https://doi.org/10.1080/00218839.1985.11100664

    Article  Google Scholar 

  • Sousa-Lopes B, Calixto ES, Torezan-Silingardi HM, Del-Claro K (2020) Effects of ants on pollinator performance in a distylous pericarpial nectary-bearing Rubiaceae in Brazilian Cerrado. Sociobiology 67:173–185. https://doi.org/10.13102/sociobiology.v67i2.4846

    Article  Google Scholar 

  • Sprengel CK (1793) Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen. Vieweg, Berlin

    Book  Google Scholar 

  • Stavenga DG, Staalb M, van der Kooi C (2020) Conical epidermal cells cause velvety colouration and enhanced patterning in Mandevilla flowers. Faraday Discuss. https://doi.org/10.1039/d0fd00055h

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in Angiosperms, I: Pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Steiner KE, Whitehead VB, Johnson SD (1994) Floral and pollinator divergence in two sexually deceptive South African orchids. Am J Bot 81:185–194

    Article  Google Scholar 

  • Stiles FG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Mo Bot Gard 68:323–351

    Article  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45

    Article  Google Scholar 

  • Streher NS, Bergamo PJ, Ashman TL, Wolowski M, Sazima M (2020) Effect of heterospecific pollen deposition on pollen tube growth depends on the phylogenetic relatedness between donor and recipient. AoB Plants 12(4)

    Google Scholar 

  • Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370. https://doi.org/10.1242/jeb.027482

    Article  Google Scholar 

  • Suhaida M, Haron NW, Chua LSL, Chung RCK (2018) Floral phenology and pollination biology of Vatica yeechongii (Dipterocarpaceae). J Trop For Sci 30:497–508

    Google Scholar 

  • Tamura S, Kudo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol 147:185–192

    Article  Google Scholar 

  • Teixeira TPO, Ferreira INM, Borges JPR, Torezan-Silingardi HM, Silva-Neto CM, Franceschinelli EV (2019) Reproductive strategy and the effect of floral pillagers on fruit production of the passion flower Passifora setacea cultivated in Brazil. Rev Bras Bot 42:63–71. https://doi.org/10.1007/s40415-018-00512-z

    Article  Google Scholar 

  • Terry I, Tang W, Blake AST, Donaldson JS, Singh R, Vovides AP, Jarámillo AC (2012) An overview of cycad pollination studies. Mem N Y Bot Gard 106:352–394

    Google Scholar 

  • Teppner H (2005) Pollinators of tomato, Solanum lycopersicum (Solanaceae), in Central Europe. Phyton (Horn, Austria) 45:217–235

    Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619

    Article  Google Scholar 

  • Thien LB (1980) Patterns of pollination in the primitive angiosperms. Biotropica 12:1–13

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Thompson JN (2014) Interaction and coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thomson JD, Fung HF, Ogilvie JE (2019) Effects of spatial patterning of co-flowering plant species on pollination quantity and purity. Ann Bot 123:303–310. https://doi.org/10.1093/aob/mcy120

    Article  Google Scholar 

  • Thorogood C, Santos JC (2020) Langsdorffia: creatures from the deep? Plants, people. Plan Theory 2:181–185. https://doi.org/10.1002/ppp3.10102

    Article  Google Scholar 

  • Torezan-Silingardi HM, Del-Claro K (1998) Behavior of visitors and reproductive biology of Campomanesia pubescens (Myrtaceae) in cerrado vegetation. Ciência e Cultura 50:281–284

    Google Scholar 

  • Torezan-Silingardi HM (2011) Predatory behavior of Pachodynerus brevithorax (Hymenoptera: Vespidae, Eumeninae) on endophytic herbivore beetles in the Brazilian Tropical Savanna. Sociobiology 57:181–189

    Google Scholar 

  • Torezan-Silingardi HM, Oliveira PEAM (2004) Phenology and reproductive biology of Myrcia rostrate and M. tomentosa (Myrtaceae) in Central Brazil. Phyton (Horn, Austria) 44:23–43

    Google Scholar 

  • Torezan-Silingardi HM (2008) The danger of introducing bee species, a case study on Brazilian tropical savanna. EOLSS – eolss.nt

    Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  Google Scholar 

  • Tremlett CJ, Moore M, Chapman MA, Zamora-Gutierrez V, Peh KSH (2020) Pollination by bats enhances both quality and yield of a major cash crop in Mexico. J Appl Ecol 57:450–459. https://doi.org/10.1111/1365-2664.13545

    Article  Google Scholar 

  • Triplehorn N, Johnson CA (2020) Borror and Delong’s introduction to the study of insects. Cengage Learning Group

    Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22:149–162

    Article  Google Scholar 

  • Tscheulin T, Petanidou T (2013) The presence of the invasive plant Solanum elaeagnifolium deters honeybees and increases pollen limitation in the native co-flowering species Glaucium flavum. Biol Invasions 15:385–393. https://doi.org/10.1007/s10530-012-0293-y

    Article  Google Scholar 

  • (USDA) New Pest Response Guidelines Vespa mandarinia Asian giant hornet (2020). https://cms.agr.wa.gov/WSDAKentico/Documents/PP/PestProgram/Vespa_mandarinia_NPRG_10Feb2020-(002).pdf

  • van der Kooi C, Ollerton J (2020) The origins of flowering plants and insect pollination. Science 368(6497):1306–1308. https://doi.org/10.1126/science.aay3662

    Article  Google Scholar 

  • Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9:e86209

    Article  Google Scholar 

  • Vaudo AD, Tooker JF, Grozinger CM, Patch HM (2015) Bee nutrition and floral resource restoration. Curr Opin Insect Sci 10:133–141

    Article  Google Scholar 

  • Vaudo AD, Tooker JF, Patch HM, Biddinger DJ, Coccia M, Crone MK, Fiely M, Francis JS, Hines HM et al (2020) Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11:132. https://doi.org/10.3390/insects11020132

    Article  Google Scholar 

  • Vilela AA, Del Claro VTS, Torezan-Silingardi HM, Del-Claro K (2018) Climate changes affecting biotic interactions, phenology, and reproductive success in a savanna community over a 10-year period. Arthropod Plant Interact 12:215–227

    Article  Google Scholar 

  • Vitali MJ, Machado VLL (1994) Visitantes florais de Murraya exótica L. (Rutaceae). Semina 15(2):153–169

    Google Scholar 

  • Vogel S (1962) Duftdrüsen im Dienste der Bestäubung.: Über Bau und Funktion der Osmophoren. Abhandlung der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften. Mainz 10:599–763

    Google Scholar 

  • Vogel S (1963) Duftdrüsen im Dienste der Bestäubung: Über Bau und Funktion der Osmophoren, vol. 10. Akademie der Wissenschaften und der Literatur Mainz Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, pp. 601–763

    Google Scholar 

  • Vogel S (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Plant Syst Evol 113:302–361

    Article  Google Scholar 

  • Vogel, S (1974) Olblumen und olsammelnde Bienen. 267 S., 76 Abb., 8 Tab. Franz Steiner Verlag GmbH. Wiesbaden

    Google Scholar 

  • Vogel S (1978) Pilzmückenblumen als Pilzmimeten. Flora 167:329–366

    Article  Google Scholar 

  • Vogel S, Michener C (1985) Long bee legs and oil-producing floral spurs, and a new Rediviva (Hymenoptera, Melittidae; Scrophulariaceae). J Kansas Entomol Soc 58(2):359–364

    Google Scholar 

  • Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem N Y Bot Gard 55:130–142

    Google Scholar 

  • Vogel S (1998a) Remarkable nectaries: structure, ecology, organophyletic perspectives III. Nectar ducts Flora 193:113–131

    Article  Google Scholar 

  • Vogel S (1998b) Remarkable nectaries: structure, ecology, organophyletic perspectives IV. Miscellaneous cases. Flora 193:225–248

    Article  Google Scholar 

  • Vogel S, Lopes AV, Machado IC (2005) Bat pollination in the NE Brazilian endemic Mimosa lewisii: an unusual case and first report for the genus. Taxon 54:693–700

    Article  Google Scholar 

  • Vogel S (2009) The non-African oil-flowers and their bees: a brief survey. S Afr J Bot 75:389–390. https://doi.org/10.1016/j.sajb.2009.02.018

    Article  Google Scholar 

  • Wang TV, Clifford MR, Martínez-Gómez J, Johnson JC, Riffell JA, Stilio VSD (2019) Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits. Ann Bot 123:289–301. https://doi.org/10.1093/aob/mcy131

    Article  Google Scholar 

  • Warrant EJ, Kelber A, Gislen GB, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a Tropical Halictid bee. Curr Biol 14:1309–1318. https://doi.org/10.1016/j.cub.2004.07.057

    Article  Google Scholar 

  • Warrant EJ (2008) Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J Exp Biol 211:1737–1746

    Article  Google Scholar 

  • Waser N, Chittka L, Price M, Williams N, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Wcislo WT, Arneson L, Roesch K, Gonzalez V, Smith A, Fernández H (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol J Linn Soc 83:377–387

    Article  Google Scholar 

  • Webber AC, Gottsberger G (1995) Floral biology and pollination of Bocageopsis multiflora and Oxandra euneura in Central Amazonia, with remarks on the evolution of stamens in Annonaceae. Feddes Repert 106:515–524

    Article  Google Scholar 

  • Wee SL, Tan SB, Jürgens A (2018) Pollinator specialization in the enigmatic Rafflesia cantleyi: a true carrion flower with species-specific and sex-biased blow fly pollinators. Phytochemistry 153:120–128

    Article  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Lett Nat 425:282–285. https://doi.org/10.1038/nature01884

    Article  Google Scholar 

  • Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40:1209–1222

    Article  Google Scholar 

  • Whelan CJ, Wenny DG, Marquis RJ (2008) Ecosystem services provided by birds. Ann N Y Acad Sci 1134:25–60. https://doi.org/10.1196/annals.1439.003

    Article  Google Scholar 

  • Wiemer AP, Sérsic AN, Marino S, Simões AO, Cocucci AA (2012) Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae–Apocynaceae). Ann Bot 109:77–93. https://doi.org/10.1093/aob/mcr268

    Article  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7(6):270–277

    Article  Google Scholar 

  • Williams GA, Adam P, Mound LA (2001) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). J Nat Hist 35:1–21

    Article  Google Scholar 

  • Williams H, Nejati M, Hussein S, Penhall N, Lim JY et al (2019) Autonomous pollination of individual kiwifruit flowers: toward a robotic kiwifruit pollinator. J Field Robot. https://doi.org/10.1002/rob.21861

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415:522–526

    Article  Google Scholar 

  • Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Article  Google Scholar 

  • Williams NM, Ward KL, Pope N, Isaacs R, Wilson J, May EA, Ellis J et al (2015) Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol Appl 25:2119–2131

    Article  Google Scholar 

  • Wilson EO (1992) The diversity of life. Harvard University Press, 424pp, Massachusets

    Google Scholar 

  • Wiśniewska N, Lipińska MM, Gołębiowski M, Kowalkowska AK (2019) Labellum structure of Bulbophyllum echinolabium J.J. Sm. (section Lepidorhiza Schltr., Bulbophyllinae Schltr., Orchidaceae Juss.). Protoplasma 256:1185–1203

    Article  Google Scholar 

  • Wolda H, Roubik DW (1986) Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67:426–433

    Article  Google Scholar 

  • Wolowski M, Agostini K, Rech AR, Varassin IG, Maués M, Freitas L, Carneiro LT, Bueno RO, Consolaro H, Carvalheiro L, Saraiva AM, Silva CI, Padgurschi MCG (Org.). 1ª edição. BPBES/REBIPP (2019) Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Editora Cubo. 184 páginas, São Carlos, SP. https://doi.org/10.4322/978-85-60064-83-0

    Book  Google Scholar 

  • Woodcock BA, Garratt MPD, Powney GD, Shaw RF, Osborne JL et al (2019) Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat Commun 10:1481. https://doi.org/10.1038/s41467-019-09393-6

    Article  Google Scholar 

  • Yamamoto M, Silva CI, Augusto SC, Barbosa AAA, Oliveira PE (2012) The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma flavicarpa, Passifloraceae) crop in Central Brazil. Apidologie 43:515–526. https://doi.org/10.1007/s13592-012-0120-6

    Article  Google Scholar 

  • Zespri (2016) Zespri annual report. http://www.zespri.com/ZespriInvestorPublications/Annual-Report-2016-17.pdf

  • Zoeller KC, Steenhuisen SL, Johnson SD, Midgley JJ (2016) New evidence for mammal pollination of Protea species (Proteaceae) based on remote-camera analysis. Aust J Bot 64:1–7. https://doi.org/10.1071/BT15111

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Brigitte Gottsberger for identifying the Glaphyridae beetle, Eduardo Andrade Botelho de Almeida for identifying the bees, André Vitor Lucci Freitas for identifying the Pieridae butterfly, Liliane Martins de Oliveira for identifying the bird C. flaveola. We are also grateful to Ana Paula Moraes, Felipe W. Amorim and Kleber Del-Claro for helpful comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Maura Torezan-Silingardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torezan-Silingardi, H.M., Silberbauer-Gottsberger, I., Gottsberger, G. (2021). Pollination Ecology: Natural History, Perspectives and Future Directions. In: Del-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877-8_6

Download citation

Publish with us

Policies and ethics