Skip to main content

An Evolutionary Perspective on Plant-Animal Interactions

  • Chapter
  • First Online:
Plant-Animal Interactions

Abstract

In this introductory chapter we present a general view of plant-animal interactions. We discuss the origins of these interactions and how they evolved to shape the amazing biodiversity of life that surrounds us, a main goal of evolutionary biology. Biotic interactions are dynamic and their outcomes vary in space and time in a wide spectrum from positive to neutral to negative. Our main goal is to present plant-animal interactions as evolutionarily complex systems that shape the ecological networks that maintain viable natural communities. This introductory chapter will prepare the reader to better understand the more detailed information about plant-animal interactions that will be presented in subsequent chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson WG (1989) Plant-animal interactions: an overview. In: Abrahamson WG (ed) Plant-animal interactions. Mc-Graw-Hill Publishing, New York, pp 1–22

    Google Scholar 

  • Barker HL, Holeski LM, Lindroth RL (2018) Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS One 13:e0200954

    Article  Google Scholar 

  • Bawa KS (1995) Pollination, seed dispersal and diversification of angiosperms. Trends Ecol Evol 10(8):311–312

    Article  Google Scholar 

  • Broch DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in social amoeba. Nature 469:393–396

    Article  Google Scholar 

  • Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97:1160–1170

    Article  Google Scholar 

  • Calixto ES, Lange D, Del-Claro K (2015) Foliar anti-herbivore defenses in Qualea multiflora Mart. (Vochysiaceae): changing strategy according to leaf development. Flora 212:19–23

    Article  Google Scholar 

  • Calixto ES, Lange D, Bronstein J, Torezan-Silingardi HM, Del-Claro K (2020) Optimal defense theory in an ant–plant mutualism: extrafloral nectar as an induced defence is maximized in the most valuable plant structures. J Ecol:1–12. https://doi.org/10.1111/1365-2745.13457

  • Coiro M, Doyle JA, Hilton J (2019) How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol 223:83–99

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annl Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical rain forests: an ecological and biogeographical comparison. Wiley-Blackwell, Sussex

    Book  Google Scholar 

  • Crawley MJ (1983) Herbivory, the dynamics of animal-plant interactions. Blackwell Science Publications, Oxford

    Google Scholar 

  • Crepet WL, Friis EM (1989) The evolution of insect pollination in angiosperms. In: Friss EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge, UK, pp 181–201, 358

    Google Scholar 

  • Dáttilo W, Rico-Gray V (2018) Ecological networks in the tropics: an integrative overview of species interactions from some of the most species-rich habitats on earth. Springer Nature, Cham

    Book  Google Scholar 

  • de Andreazzi CS, Astegiano J, Guimarães PR Jr (2020) Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. Oikos 129:224–237

    Article  Google Scholar 

  • Del-Claro K, Marquis RJ (2015) Ant species identity has a greater effect than fire on the outcome of an ant protection system in Brazilian Cerrado. Biotropica 47:459–467

    Article  Google Scholar 

  • Del-Claro K, Torezan-Silingardi HM (2020) In search of unusual interactions. A commentary on: ‘Pollen adaptation to ant pollination: a case study from the Proteaceae’. Ann Bot. https://doi.org/10.1093/aob/mcaa126

  • Del-Claro K, Rico-Gray V, Torezan-Silingardi HM, Alves-Silva E, Fagundes R, Lnge D, Dáttilo W, Vilela AA, Aguirre A, Rodriguez-Morales D (2016) Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insect Soc 63:207–221

    Article  Google Scholar 

  • Del-Claro K, Rodriguez-Morales D, Calixto ES, Martins AS, Torezan-Silingardi HM (2019) Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Ann Bot 123:1159–1165

    Article  Google Scholar 

  • Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. PNAS 114:E7499–E7505

    Article  Google Scholar 

  • Fu Q, Diez JB, Pole M et al (2018) Anunexpected noncarpellate epigynous flower from the Jurassic of China. Elife 7:e38827

    Article  Google Scholar 

  • Futuyma D (2009) Biologia evolutiva. Funpec, São Paulo

    Google Scholar 

  • Grimaldi D (1999) The co-radiation of pollinating insects and angiosperms in the Cretaceous. Ann Mo Bot Gard 86:373–406

    Article  Google Scholar 

  • Holeski LM, Hillstrom ML, Whitham TG, Lindroth RL (2012) Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia 170:695–707

    Article  Google Scholar 

  • Hu S, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm–pollinator coevolution. PNAS 105(1):240–245

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Chicago University Press, Chicago

    Book  Google Scholar 

  • Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am J Bot 82(7):862–868

    Article  Google Scholar 

  • Labandeira CC (1998) Plant-insect associations from the fossil record. Geotimes 43:18–24

    Google Scholar 

  • Labandeira CC (2002) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant animal interactions, an evolutionary approach. Blackwell Science Ltd, Oxford, pp 26–76

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  • Marquis RJ (1992) The selective impact of herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. Univ. of Chicago Press, Chicago, pp 301–325

    Google Scholar 

  • Marquis RJ, Braker HE (1994) Plant-herbivore interactions: diversity, specificity, and impact. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a Neotropical rain forest. Chicago Press, Chicago, pp 261–281

    Google Scholar 

  • Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K (2016) Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 97:2939–2951

    Article  Google Scholar 

  • Martin W, Mentel M (2010) The origin of mitochondria. Nat Educ 3(9):58

    Google Scholar 

  • Mathis KA, Bronstein JL (2020) Our current understanding of commensalism. Annu Rev Ecol Evol Syst 51:1

    Article  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • McKey D (1979) The distribution of plant secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic press, New York, pp 55–133

    Google Scholar 

  • Novaes LR, Calixto ES, Oliveira ML, Lima LA, Almeida O, Torezan-Silingardi HM (2020) Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: a new wind-based approach. Sci Total Environ 730:139039

    Article  Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376

    Article  Google Scholar 

  • Price PW (2002a) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant animal interactions, an evolutionary approach. Blackwell Science Ltd, Oxford, pp 3–25

    Google Scholar 

  • Price PW (2002b) Macroevolutionary theory on macroecological patters. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Price PW, Bouton CE, Gross P et al (1980) Interactions among three trophic levels: influence of plant on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Ramírez-Barahona S, Sauquet H, Magallón S (2020) The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-1241-3

  • Razo-Belman R, Molina-Torres J, Martínez O, Heil M (2018) Plant-ants use resistance-related plant odours to assess host quality before colony founding. J Ecol 2018(106):379–390

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic press, New York, pp 1–55

    Google Scholar 

  • Ricklefs RE (2001) The economy of nature, 5th edn. W. H. Freeman, New York

    Google Scholar 

  • Simmons BI, Sutherland WJ, Dicks LV, Albrecht J, Farwig N, García D, Jordano P, González-Varo JP (2018) Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J Anim Ecol 87:995–1007

    Article  Google Scholar 

  • Slansky F, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley Interscience, New York

    Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Harvard University Press, Cambridge

    Google Scholar 

  • Terborgh J, Estes JA (2010) Trophic cascades. In: Predators, prey, and the changing dynamics of nature. Island Press, Washington, DC

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2012) O futuro dos estudos plantas-animais. In: Del-Claro K, Torezan-Silingardi HM (eds) Ecologia das interações animais-plantas: uma abordagem ecológico-evolutiva. Technical Books Editoria, Rio de Janeiro, pp 307–318

    Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2014) Interaction and coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2020) Geographic mosaic theory of coevolution. Encyclopedia Britannica. https://www.britannica.com/science/community-ecology/Gene-for-gene-coevolution

  • Townsend CR, Begon M, Harper JL (2006) Fundamentos em Ecologia. ArtMed Editora, Porto Alegre

    Google Scholar 

  • van der Kooi CJ, Ollerton J (2020) The origins of flowering plants and pollinators. Science 368:1306–1308

    Article  Google Scholar 

  • Velasque M, Del-Claro K (2016) Host plant phenology may determine the abundance of an ecosystem engineering herbivore in a tropical savanna. Ecol Entomol 41:421–430

    Article  Google Scholar 

  • Wayne R (2010) Plant cell biology. Academic Press, Elsevier, New York

    Google Scholar 

Download references

Acknowledgements

We thank to Eva Colberg for the excellent English review and comments in the chapter; and Renan Moura for comments and suggestions. CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleber Del-Claro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del-Claro, K., Torezan-Silingardi, H.M. (2021). An Evolutionary Perspective on Plant-Animal Interactions. In: Del-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877-8_1

Download citation

Publish with us

Policies and ethics