Skip to main content

Biohydrometallurgy: A Sustainable Approach for Urban Mining of Metals and Metal Refining

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Electronic waste (e-waste) is termed as “urban mines” due to high metal content. Metals are major components of e-waste and have a share of 61 wt% of e-waste. E-waste contains various valuable metals such as gold, silver, platinum, palladium, copper, nickel, etc. Therefore, metal recovery is important to conserve the resources. Apart from this, the unregulated accumulation and improper recycling of e-waste have harmful effects on human health and environment. Therefore, environmentally friendly e-waste recycling is the need of the hour to mitigate the harmful effects. Currently, pyrometallurgy and hydrometallurgy are the conventional processes employed for recovery of metals from e-waste. However, these technologies are non-selective and energy-intensive, employ hazardous chemicals, and produce toxic gases. Biohydrometallurgy is a promising alternative and is an eco-friendly approach to recycle e-waste as it employs microorganisms for metal recovery. Biohydrometallurgy employs different approaches such as autotrophic bacteria bioleaching, heterotrophic bacteria bioleaching, and heterotrophic fungi bioleaching for leaching of metals and has been discussed in this chapter. In addition, the refining of metals from metal leached solution has also been discussed in this chapter. The development of continuous process for metal recovery is important, and we have discussed a coiled flow inverter (CFI) reactor as a promising option for the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forti V, Blade CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential, no. July. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – Co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Geneva

    Google Scholar 

  2. Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2020) Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag 118:150–160

    Article  CAS  Google Scholar 

  3. Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches : an overview. Waste Manag 33:1237–1250

    Google Scholar 

  4. Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste : a global environmental problem. Waste Manag Res 25:307–318

    Google Scholar 

  5. Ongondo FO, Williams ID, Cherrett TJ (2011) How are WEEE doing ? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730

    Google Scholar 

  6. Widmer R, Krapf H, Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Article  Google Scholar 

  7. Das A, Vidyadhar A, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recycl 53:464–469

    Article  Google Scholar 

  8. Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434

    Article  CAS  Google Scholar 

  9. Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap : hydrometallurgy in recycling. Miner Eng 25:28–37

    Google Scholar 

  10. Kusch S, Hills CD (2017) The link between E-waste and GDP – new insights from data from the Pan-European region. Resources 6:1–10

    Google Scholar 

  11. Hsu E, Barmak K, West AC, Park A-H (2019) Advancements in the treatment and processing of electronic waste with sustainability : a review of metal extraction and recovery technologies. Green Chem 21:919–936

    Google Scholar 

  12. Khaliq A, Rhamdhani M, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and australian perspective. Resources 3:152–179

    Article  Google Scholar 

  13. Hagelüken C (2007) Metals recovery from e-scrap in a global environment. In: 6th Session of OEWG Basel convention

    Google Scholar 

  14. Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manag 57:102–112

    Article  CAS  Google Scholar 

  15. Panda R, Jadhao PR, Pant KK, Naik SN, Bhaskar T (2020) Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting. J Hazard Mater 395:122642

    Article  CAS  Google Scholar 

  16. Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment : challenges & opportunities – a review. J Environ Chem Eng 6:1288–1304

    Google Scholar 

  17. Baniasadi M, Vakilchap F, Bahaloo-horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste : a review. J Ind Eng Chem 76:75–90

    Google Scholar 

  18. Kumar A, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour Conserv Recycl 126:228–239

    Article  Google Scholar 

  19. Habibi A, Kourdestani SS, Hadadi M (2020) Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste : a review. Waste Manag Res 38:232–244

    Google Scholar 

  20. Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  CAS  Google Scholar 

  21. Shuey SA, Taylor P (2005) Review of pyrometallurgical treatment of electronic scrap. In: SME annual meeting, pp 1–4

    Google Scholar 

  22. Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Proc Environ Sci 16:560–568

    Article  CAS  Google Scholar 

  23. Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – a review. Waste Manag 45:258–271

    Google Scholar 

  24. Morin D et al (2006) BioMinE - integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83:69–76

    Article  CAS  Google Scholar 

  25. Jain R et al (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925

    Article  CAS  Google Scholar 

  26. Muñoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1. J Hazard Mater 329:166–177

    Article  CAS  Google Scholar 

  27. Ilyas S, Lee J (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1:148–169

    Article  Google Scholar 

  28. Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  CAS  Google Scholar 

  29. Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956

    Article  CAS  Google Scholar 

  30. Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848

    Article  CAS  Google Scholar 

  31. Işıldar A et al (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J Hazard Mater 362:467–481

    Google Scholar 

  32. Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70

    Article  CAS  Google Scholar 

  33. Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472

    Article  CAS  Google Scholar 

  34. Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Chemosphere column bioleaching copper and its kinetics of waste printed circuit boards ( WPCBs ) by acidithiobacillus ferrooxidans. Chemosphere 141:162–168

    Article  CAS  Google Scholar 

  35. Isildar A, Van De Vossenberg J, Rene ER, Van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157

    Article  CAS  Google Scholar 

  36. Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219

    Article  CAS  Google Scholar 

  37. Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242

    Article  CAS  Google Scholar 

  38. Arshadi M, Mousavi SM (2015) Statistical evaluation of bioleaching of mobile phone and computer waste PCBs: a comparative study. Adv Mater Res 1104:87–92

    Article  Google Scholar 

  39. Liang G, Li P, Liu W, Wang B (2016) Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans. J Mater Cycles Waste Manag 18:742–751

    Article  CAS  Google Scholar 

  40. Bajestani MI, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316

    Article  CAS  Google Scholar 

  41. Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32

    Article  CAS  Google Scholar 

  42. Muravyov MI, Bulaev AG, Melamud VS, Kondrat’eva TF (2015) Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology 84:194–201

    Article  CAS  Google Scholar 

  43. Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a Brewer’s yeast strain of Saccharomyces cerevisiae : chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180:347–353

    Article  CAS  Google Scholar 

  44. Das N, Das D (2013) Recovery of rare earth metals through biosorption : an overview. J Rare Earths 31:933–943

    Google Scholar 

  45. Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    Article  CAS  Google Scholar 

  46. Shabani MA, Irannajad M, Azadmehr AR, Meshkini M (2013) Bioleaching of copper oxide ore by Pseudomonas Aeruginosa. Int J Miner Metall Mater 20:1130–1133

    Article  CAS  Google Scholar 

  47. Rezza I, Salinas E, Sanz de Tosetti M, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36:495–500

    Article  CAS  Google Scholar 

  48. Jujun R, Xingjiong Z, Yiming Q, Jian H (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34:901–907

    Article  CAS  Google Scholar 

  49. Chi TD, Lee JC, Pandey BD, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24:1219–1222

    Article  CAS  Google Scholar 

  50. Marsden JO, House CI (2006) The chemistry of gold extraction, second. Society of Mining, Metallurgy, and Exploration, Inc., Englewood, CO

    Google Scholar 

  51. Rees KL, Van Deventer JSJ (1999) The role of metal-cyanide species in leaching gold from a copper concentrate. Miner Eng 12:877–892

    Article  CAS  Google Scholar 

  52. Kita Y, Nishikawa H, Ike M, Takemoto T (2009) Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction. Metall Mater Trans B Process Metall Mater Process Sci 40B:39–44

    Article  CAS  Google Scholar 

  53. Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PNL (2018) Bioleaching of metals from WEEE shredding dust. J Environ Manag 210:180–190

    Article  CAS  Google Scholar 

  54. Natarajan G, Tay SB, Yew WS, Ting YP (2015) Engineered strains enhance gold biorecovery from electronic scrap. Miner Eng 75:32–37

    Article  CAS  Google Scholar 

  55. Natarajan G, Ting YP (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85

    Article  CAS  Google Scholar 

  56. Li J, Liang C, Ma C (2015) Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycles Waste Manag 17:529–539

    Article  CAS  Google Scholar 

  57. Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159

    Article  CAS  Google Scholar 

  58. Faramarzi MA, Brandl H (2006) Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol Lett 259:47–52

    Article  CAS  Google Scholar 

  59. Lee J, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction – a review. Waste Manag 32:3–18

    Google Scholar 

  60. Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes : metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326

    Google Scholar 

  61. Brombacher C, Bachofen R, Brandl H (1998) Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl Environ Microbiol 64:1237–1241

    Article  CAS  Google Scholar 

  62. Bosshar PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3070

    Article  Google Scholar 

  63. Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium – uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas Aeruginosa. Arab J Chem 9:S795–S805

    Article  CAS  Google Scholar 

  64. Hassanien WAG, Desouky OAN, Hussien SSE (2014) Bioleaching of some rare earth elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas Aeruginosa. Walailak J Sci Tech 11:809–823

    Google Scholar 

  65. Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, Zhang H (2020) Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res 182:109061

    Article  CAS  Google Scholar 

  66. Arshadi M, Mousavi SM, Rasoulnia P (2016) Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Manag 57:158–167

    Article  CAS  Google Scholar 

  67. Huang H et al (2016) A novel Pseudomonas Gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378

    Article  CAS  Google Scholar 

  68. Mahmoud A, Cezac P, Hoadley AFA, Contamine F, D’Hugues P (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegradation 119:118–146

    Article  CAS  Google Scholar 

  69. Xia M et al (2018) Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour Conserv Recycl 136:267–275

    Article  Google Scholar 

  70. Veglio F, Beolchini F (1997) Removal of metals by biosorption : a review. Hydrometallurgy 44:301–316

    Google Scholar 

  71. Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with chlorella vulgaris : kinetic and equilibrium modeling. J Clean Prod 171:1361–1375

    Google Scholar 

  72. Ilyas S, Lee J, Chi R (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143

    Article  CAS  Google Scholar 

  73. Salvadori MR, Ando RA, Nascimento CAO, Correa B (2017) Dead biomass of Amazon yeast : a new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J Environ Sci Heal A 52:1–9

    Google Scholar 

  74. Paknikar KM, Pethkar AV, Puranik PR (2003) Bioremediation of metalliferous wastes and products using inactivated microbial biomass. Indian J Biotechnol 2:426–443

    CAS  Google Scholar 

  75. Baran MF (2019) Biosorption of Pb 2 + from aqueous solutions by Bacillus licheniformis Isolated from Tigris River with a comparative study. Int J Latest Eng Manag Res 4:108–121

    Google Scholar 

  76. Joo JH, Hassan SHA, Oh SE (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741

    Article  CAS  Google Scholar 

  77. Sahmoune MN (2018) Performance of Streptomyces Rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95

    Article  CAS  Google Scholar 

  78. Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24

    Article  CAS  Google Scholar 

  79. Ahmady-Asbchin S, Safari M, Tabaraki R (2015) Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin Water Treat 54:3372–3379

    Article  CAS  Google Scholar 

  80. Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  Google Scholar 

  81. Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  82. Dursun AY, Uslu G, Tepe O, Cuci Y, Ekiz HI (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15:87–92

    Article  CAS  Google Scholar 

  83. Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    Article  CAS  Google Scholar 

  84. Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    Article  CAS  Google Scholar 

  85. Ponce de León CA, Bayón MM, Paquin C, Caruso JA (2002) Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol 92:602–610

    Article  Google Scholar 

  86. Munoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag (I) from aqueous solutions by Klebsiella sp . 3S1. J Hazard Mater 329:166–177

    Article  CAS  Google Scholar 

  87. Chatterjee A, Das R, Abraham J (2020) Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1. Int J Environ Sci Technol 17:49–66

    Article  CAS  Google Scholar 

  88. Abdallah MAM, Mahmoud ME, Osman MM, Ahmed SB (2017) New Biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt. Appl Water Sci 7:1931–1942

    Article  CAS  Google Scholar 

  89. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427

    Article  CAS  Google Scholar 

  90. Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  Google Scholar 

  91. Kalak T, Dudczak-Halabuda J, Tachibana Y, Cierpiszewski R (2020) Effective use of elderberry ( Sambucus nigra ) pomace in biosorption processes of Fe (III) Ions. Chemosphere 246:125744

    Article  CAS  Google Scholar 

  92. Vendruscolo F, Ferreira GLR, Filho NRA (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegradation 119:87–95

    Article  CAS  Google Scholar 

  93. Li L, Hu Q, Zeng J, Qi H, Zhuang G (2011) Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. J Environ Sci 23:108–111

    Article  CAS  Google Scholar 

  94. Nicomel NR et al (2020) Microalgae : a sustainable adsorbent with high potential for upconcentration of indium (III) from liquid process and waste streams. Green Chem 22:1985–1995

    Google Scholar 

  95. Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T (2018) Biosorption of multi-heavy metals by coral associated phosphate solubilising Bacteria Cronobacter Muytjensii KSCAS2. J Environ Manag 222:396–401

    Article  CAS  Google Scholar 

  96. De Freitas F, Battirola LD, Arruda R, de Andrade RT (2019) Assessment of the Cu ( II ) and Pb ( II ) removal efficiency of aqueous solutions by the dry biomass Aguapé : kinetics of adsorption. Env Monit Assess 191:751

    Google Scholar 

  97. Cid H, Ortiz C, Pizarro J, Moreno-piraján JC (2020) Effect of copper (ii) biosorption over light metal cation desorption in the surface of Macrocystis Pyrifera Biomass. J Environ Chem Eng 8:103729

    Article  CAS  Google Scholar 

  98. Moghaddam SAE, Harun R, Mokhtar MN, Zakaria R (2020) Kinetic and equilibrium modeling for the biosorption of metal ion by zeolite 13X-algal-alginate beads (ZABs). J Water Process Eng 33:101057

    Article  Google Scholar 

  99. Sheel A, Pant D (2018) Recovery of Gold from Electronic Waste using Chemical Assisted Microbial Biosorption ( hybrid ) Technique. Bioresour Technol 247:1189–1192

    Article  CAS  Google Scholar 

  100. Ai C et al (2020) Recovery of metals from acid mine drainage by bioelectrochemical system Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms 8:1–16

    Google Scholar 

  101. Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14

    Article  Google Scholar 

  102. Tugtas AE, Calli B (2018) Removal and recovery of metals by using bio-electrochemical system. In: Das D (ed) Microbial fuel cell. New Delhi, Capital Publishing Company, pp 307–333

    Chapter  Google Scholar 

  103. Huang T, Liu L, Zhang S (2019) Microbial fuel cells coupled with the bioleaching technique that enhances the recovery of cu from the secondary mine tailings in the bio-electrochemical system. Environ Prog Sustain Energy 38:1–9

    Article  CAS  Google Scholar 

  104. Velvizhi G, Goud RK, Mohan SV (2014) Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation. Bioresour Technol 151:214–220

    Article  CAS  Google Scholar 

  105. Nancharaiah YV, Mohan SV, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114

    Article  CAS  Google Scholar 

  106. Huang L, Yao B, Wu D, Quan X (2014) Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - microbial electrolysis cell systems. J Power Sources 259:54–64

    Article  CAS  Google Scholar 

  107. Ter Heijne A, Liu F, Van Der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381

    Article  CAS  Google Scholar 

  108. Hu N, Cui Y, Choi C (2019) Recovery of platinum-group metals using a microbial fuel cell. Trends Diabetes Metab 2:1–9

    Article  CAS  Google Scholar 

  109. Vural Gürsel I, Kockmann N, Hessel V (2017) Fluidic separation in microstructured devices – concepts and their integration into process flow networks. Chem Eng Sci 169:3–17

    Google Scholar 

  110. Kurt SK, Vural Gürsel I, Hessel V, Nigam KDP, Kockmann N (2016) Liquid-liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chem Eng J 284:764–777

    Article  CAS  Google Scholar 

  111. Kurt SK, Akhtar M, Nigam KDP, Kockmann N (2016) Modular concept of a smart scale helically coiled tubular reactor for continuous operation of multiphase reaction systems. In: Proceedings of the ASME 2016 14th international conference on nanochannels, microchannels, and minichannels, pp 1–12

    Google Scholar 

  112. Vural Gürsel I et al (2016) Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid-liquid extraction processes. Chem Eng J 283:855–868

    Article  CAS  Google Scholar 

  113. Chauhan G, Kaur P, Pant KK, Nigam KDP (2020) Sustainable metal extraction from waste streams. WILEY-VCH Verlag GmbH, Berlin

    Book  Google Scholar 

  114. Soni S, Sharma L, Meena P, Roy S, Nigam KDP (2019) Compact coiled flow inverter for process intensification. Chem Eng Sci 193:312–324

    Article  CAS  Google Scholar 

  115. Mandal MM, Aggarwal P, Nigam KDP (2011) Liquid-liquid mixing in coiled flow inverter. Ind Eng Chem Res 50:13230–13235

    Article  CAS  Google Scholar 

  116. Singh J, Nigam KDP (2016) Pilot plant study for effective heat transfer area of coiled flow inverter. Chem Eng Process Process Intensif 102:219–228

    Article  CAS  Google Scholar 

  117. Singh J, Choudhary N, Nigam KDP (2014) The thermal and transport characteristics of nanofluids in a novel three-dimensional device. Can J Chem Eng 92:2185–2201

    Article  CAS  Google Scholar 

  118. Kateja N, Agarwal H, Saraswat A, Bhat M, Rathore AS (2016) Continuous precipitation of process related impurities from clarified cell culture supernatant using a novel coiled flow inversion reactor (CFIR). Biotechnol J 11:1320–1331

    Article  CAS  Google Scholar 

  119. Parida D et al (2014) Coil flow inversion as a route to control polymerization in microreactors. Macromolecules 47:3282–3287

    Article  CAS  Google Scholar 

  120. Vashisth S, Nigam KDP (2008) Experimental investigation of void fraction and flow patterns in coiled flow inverter. Chem Eng Process Process Intensif 47:1281–1291

    Article  CAS  Google Scholar 

  121. Zhang L, Hessel V, Peng J, Wang Q, Zhang L (2017) Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem Eng J 307:1–8

    Article  CAS  Google Scholar 

  122. Gürsel IV, Aldiansyah F, Wang Q, Noël T, Hessel V (2015) Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow. Chem Eng J 270:468–475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadhao, P.R., Mishra, S., Pandey, A., Pant, K.K., Nigam, K.D.P. (2021). Biohydrometallurgy: A Sustainable Approach for Urban Mining of Metals and Metal Refining. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_27

Download citation

Publish with us

Policies and ethics