Skip to main content

Nanostructured Photocatalysts for Degradation of Environmental Pollutants

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Water is the most essential life form on earth and a prerequisite for human survival. Due to manifold anthropogenic and industrial activities, voluminous discharge of diverse organic and inorganic pollutants has blown up into the water bodies. Organic pollutants, in particular, have a major contribution to the degradation of water quality on a vast scale. There is an exigent need for the abatement of these organic contaminants from water and wastewater. There are many conventional techniques of wastewater treatment including sedimentation, filtration, adsorption, reverse osmosis, ion exchange, coagulation and flocculation, and Fenton process. Photocatalysis is a highly efficient technique for the degradation of organic contaminants from water and wastewater. Several semiconducting materials have been used as photocatalysts, including ZnO, WO3, TiO2, Fe2O3, and ZnS, for the photocatalytic decomposition of multifarious organic pollutants. These semiconducting materials are highly beneficial for their application in the photocatalytic treatment of wastewater due to their favorable properties. They have favorable electronic structure, excellent charge transfer properties, a long lifetime in the excited state, high stability, low cost, and strong capability to absorb light. However, due to the wide gap, their application is limited to ultraviolet region with only 5% of the total spectrum of available solar light. So, modified metal oxide-based photocatalysts have been employed for the effective utilization of a wide visible spectrum of light. To modify and enhance the efficacy of these catalysts, various methodologies such as nano-structuring, metal doping, and genesis of nanocomposites have been engineered. These modified nanostructured photocatalysts provide an effective treatment potential to degrade organic water pollutants. This chapter outlines the potential and efficacy of metal oxide and modified metal oxide-based photocatalysts for the treatment of contaminants from water and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mara DD (2003) Water, sanitation and hygiene for the health of developing nations. Public Health 117(6):452–456

    Article  CAS  Google Scholar 

  2. Moore M, Gould P, Keary BS (2003) Global urbanization and impact on health. Int J Hyg Environ Health 206(4–5):269–278

    Article  Google Scholar 

  3. World Health Organization (2018) Water sanitation hygiene. WHO global water, sanitation and hygiene annual report. https://www.who.int/water_sanitation_health/publications/global-water-sanitation-and-hygiene-annual-report-2018/en/

    Google Scholar 

  4. World Health Organization (2015) Progress on sanitation and drinking water. Update and MDG assessment. WHO, Geneva. https://www.unicef.org/publications/index_82419.html

    Google Scholar 

  5. UNICEF (2006) UNICEF, human development report. Children and water, sanitation and hygiene: the evidence. UNICEF, New York, NY. http://hdr.undp.org/en/content/children-and-water-sanitation-and-hygiene-evidence

    Google Scholar 

  6. United Nations, Department of Economics and Social Affairs, Population Division (2019) World Population Prospects 2019: highlights. ST/ESA/SER. A/423

    Google Scholar 

  7. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, Ploega M, Zee SEATM, Ritsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65

    Article  Google Scholar 

  8. UNESCO WWAP (2003) Water for people, water for life: 3rd world water forum in Kyoto, Japan. http://www.unesco.org/new/en/naturalsciences/environment/water/wwap/wwdr/wwdr1-2003/

  9. Saxena R, Saxena M, Lochab A (2020) Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. Chem Select 5(1):335–353

    CAS  Google Scholar 

  10. Szabo E, Vajda K, Vereb G, Dombi A, Mogyorosi K, Abraham I, Majer M (2011) Removal of organic pollutants in model water and thermal wastewater using clay minerals. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(12):1346–1356

    Article  CAS  Google Scholar 

  11. Karpinska J, Kotowska U (2019) Removal of organic pollution in the water environment. Water 11(10):2017

    Article  CAS  Google Scholar 

  12. Bhomick PC, Supong A, Sinha D (2017) Organic pollutants in water and its remediation using biowaste activated carbon as greener adsorbent. Int J Hydro 1(3):91–92

    Google Scholar 

  13. Vie JC, Taylor CH, Stuart SN (eds) (2009) Wildlife in a changing world – an analysis of the 2008 IUCN red list of threatened species. IUCN, Gland, Switzerland, p 180

    Google Scholar 

  14. Gutierreza AM, Dziublaa TD, Hilt JZ (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32(1–2):111–117

    Article  CAS  Google Scholar 

  15. Donde OO (2017) Wastewater management techniques: a review of advancement on the appropriate wastewater treatment principles for sustainability. Environ Manag Sustain Dev 6(1):10137

    Article  Google Scholar 

  16. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Eff Technol 2(4):175–184

    Google Scholar 

  17. Koe WS, Lee JW, Chong WC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27:2522–2565

    Article  CAS  Google Scholar 

  18. Wankhade AV, Gaikwad GS, Dhonde MG, Khaty NT, Thakare SR (2013) Removal of organic pollutant from water by heterogenous photocatalysis: a review. Res J Chem Environ 17(1):84

    Google Scholar 

  19. Li Y, Chen F, He R, Wang Y, Tang N (2019) Semiconductor photocatalysis for water purification. Nanoscale Mater Water Purif 2019:689–705

    Article  Google Scholar 

  20. Herrmann JM, Disdier J, Pichat P, Malato S, Blanco J (1998) TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid (2,4-D) and of benzofuran. Appl Catal B Environ 17(1–2):15–23

    Article  CAS  Google Scholar 

  21. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  22. Chakraborty S, Farida JJ, Simon R, Kasthuri S (2020) Averrhoa carambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of congo red dye. Surf Interfaces 19:100488

    Article  CAS  Google Scholar 

  23. Heidari Z, Alizadeh R, Ebadi A, Oturan N, Oturan MA (2020) Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods. Sep Purif Technol 242:116800

    Article  CAS  Google Scholar 

  24. Sharma S, Basu S (2020) Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants. Sep Purif Technol 231:115916

    Article  CAS  Google Scholar 

  25. Hitam CNC, Jalil AA (2020) A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J Environ Manag 258:110050

    Article  CAS  Google Scholar 

  26. Hojamberdiev M, Czech B, Goktaş AC, Yubuta K, Kadirova ZC (2020) SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. J Alloys Compd 827:154339

    Article  CAS  Google Scholar 

  27. Mohanta D, Ahmaruzzaman M (2020) Biogenic synthesis of SnO2 quantum dots encapsulated carbon nanoflakes: an efficient integrated photocatalytic adsorbent for the removal of bisphenol A from aqueous solution. J Alloys Compd 828:154093

    Article  CAS  Google Scholar 

  28. Djurisic AB, Leung YH, Ng AMC (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1:400–410

    Article  CAS  Google Scholar 

  29. Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev 408:213180

    Article  CAS  Google Scholar 

  30. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy 45(13):7764–7778

    Article  CAS  Google Scholar 

  31. Rani A, Reddy R, Sharma U, Mukherjee P, Mishra P, Kuila A, Sim LC, Saravanan P (2018) A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J Nanostruct Chem 8:255–291

    Article  CAS  Google Scholar 

  32. Ren Z, Guo Y, Liu CH, Gao PX (2013) Hierarchically nanostructured materials for sustainable environmental applications. Front Chem 1:18

    Article  Google Scholar 

  33. Khairy M, Zakaria W (2014) Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet 23(4):419–426

    Article  Google Scholar 

  34. Tan YN, Wong CL, Mohamed AR (2011) An overview on the photocatalytic activity of nano-doped-TiO2 in the degradation of organic pollutants. ISRN Mater Sci 2011:261219

    Article  CAS  Google Scholar 

  35. Zhao C, Zhou Y, Ridder DJD, Zhai J, Wei Y (2014) Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: comparison between TiO2 and TiO2/5A composite system. Chem Eng J 248:280–289

    Article  CAS  Google Scholar 

  36. Guo Y, Wang P, Qian J, Hou J, Ao Y, Wang C (2018) Construction of a composite photocatalyst with significantly enhanced photocatalytic performance through combination of homo-junction with hetero-junction. Cat Sci Technol 8:486–498

    Article  CAS  Google Scholar 

  37. Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17

    Article  CAS  Google Scholar 

  38. Iwuozor KO (2019) Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Adv J Chem A 2(2):105–127

    Article  CAS  Google Scholar 

  39. Fang F, Qiao LL, Ni BJ, Cao JS, Yu HQ (2017) Quantitative evaluation on the characteristics of activated sludge granules and flocs using a fuzzy entropy-based approach. Sci Rep 7:42910

    Article  CAS  Google Scholar 

  40. Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Rosa L, Boretti A (2019) Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water 2:2

    Article  CAS  Google Scholar 

  41. Yalcinkaya F, Boyraz E, Maryska J, Kucerova K (2020) A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials (Basel) 13(2):493

    Article  CAS  Google Scholar 

  42. Boddu VM, Paul T, Page MA, Byl C, Ward L, Ruan J (2016) Gray water recycle: effect of pretreatment technologies on low pressure reverse osmosis treatment. J Environ Chem Eng 4(4):4435–4443

    Article  CAS  Google Scholar 

  43. Esmaeili H, Foroutan R (2015) Investigation into ion exchange and adsorption methods for removing heavy metals from aqueous solutions. Int J Biol Pharm Allied Sci 4:620–629

    CAS  Google Scholar 

  44. Zhang M, Dong H, Zhao L, Wang DX, Meng D (2019) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121

    Article  CAS  Google Scholar 

  45. Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8:19

    Article  CAS  Google Scholar 

  46. Li X, Xie J, Jiang C, Yu J, Zhang P (2018) Review on design and evaluation of environmental photocatalysts. Front Environ Sci Eng 12(5):14

    Article  CAS  Google Scholar 

  47. Melchionna M, Fornasiero P (2020) Updates on the roadmap for photocatalysis. ACS Catal 10:5493–5501

    Article  CAS  Google Scholar 

  48. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  49. Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. In: Khan M, Pradhan D, Sohn Y (eds) Nanocomposites for visible light-induced photocatalysis. Springer series on polymer and composite materials. Springer, Cham

    Google Scholar 

  50. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9:2489

    Article  CAS  Google Scholar 

  51. Khan MM, Adil SF, Mayouf AA (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464

    Article  Google Scholar 

  52. Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29:342001

    Article  CAS  Google Scholar 

  53. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag 12:100255

    Google Scholar 

  54. Chong M, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  55. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    Article  CAS  Google Scholar 

  56. Al-Rasheed R, Arabia S (2005) Water treatment by heterogeneous photocatalysis an overview. Chemistry 2005:15

    Google Scholar 

  57. Shaheen K, Suo H, Arshad T, Shah Z, Khan SA, Khan SB, Khan MN, Liu M, Ma L, Cui J, Ji YT, Wang Y (2020) Metal oxides nanomaterials for the photocatalytic mineralization of toxic water wastes under solar light illumination. J Water Process Eng 34:101138

    Article  Google Scholar 

  58. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  59. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  60. Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase – a review. Chem Eng J 334:2408–2439

    Article  CAS  Google Scholar 

  61. Khalilova HK, Hasanova SA, Aliyev FG (2018) Photocatalytic removal of organic pollutants from industrial wastewater using TiO2 catalyst. J Environ Prot 9(6):691–698

    Article  CAS  Google Scholar 

  62. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81(1):536–551

    Article  CAS  Google Scholar 

  63. Qiu R, Zhang D, Mo Y, Song L, Brewer E, Huang X, Xiong Y (2008) Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 156(1–3):80–85

    Article  CAS  Google Scholar 

  64. Karthikeyan C, Arunachalam P, Ramachandran K, Mayouf AMA, Karuppuchamy S (2020) Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J Alloys Compd 828:154281

    Article  CAS  Google Scholar 

  65. Pinho L, Mosquera MJ (2013) Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ 134-135:205–221

    Article  CAS  Google Scholar 

  66. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem 81(15):1484–1488

    Article  CAS  Google Scholar 

  67. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  68. Horikoshi S, Serpone N (2020) Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catal Today 340:334–346

    Article  CAS  Google Scholar 

  69. Shvadchina YO, Vakulenko VF, Levitskaya EE, Goncharuk VV (2012) Photocatalytic destruction of anionic SAS with oxygen and hydrogen peroxide in the TiO2 suspension. J Water Chem Technol 34:218–226

    Article  Google Scholar 

  70. Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509(5):1648–1660

    Article  CAS  Google Scholar 

  71. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  CAS  Google Scholar 

  72. Ani IJ, Akpan UG, Olutoye MA, Hameed BH (2018) Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: recent development. J Clean Prod 205:930–954

    Article  CAS  Google Scholar 

  73. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7(5):103248

    Article  CAS  Google Scholar 

  74. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386

    Article  CAS  Google Scholar 

  75. Fisher K, Gawel A, Rosen D, Krause M, Latif AA, Griebel J, Prager A, Schulze A (2017) Low-temperature of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts 7(7):209

    Article  CAS  Google Scholar 

  76. Guimaraes RR, Parussulo ALA, Araki K (2016) Impact of nanoparticles preparation method on the synergic effect in anatase/rutile mixtures. Electrochim Acta 222:378–1386

    Article  CAS  Google Scholar 

  77. Hussain M, Ceccarelli R, Marchisio DL, Fino D, Russo N, Geobaldo F (2010) Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem Eng J 157(1):45–51

    Article  CAS  Google Scholar 

  78. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948

    Article  CAS  Google Scholar 

  79. Pfeifer V, Erhart P, Li S, Rachut K, Morasch J, Brotz J, Reckers P, Mayer T, Ruhle S, Zaban A, Sero IM, Bisquert J, Jaegermann W, Klein A (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4(23):4182–4187

    Article  CAS  Google Scholar 

  80. Hussain M, Russo N, Saracco G (2011) Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chem Eng J 166(1):138–149

    Article  CAS  Google Scholar 

  81. Wang C, Wu T (2015) TiO2 nanoparticles with efficient photocatalytic activity towards gaseous benzene degradation. Ceram Int 41(2):2836–2839

    Article  CAS  Google Scholar 

  82. Colombo DP Jr, Bowman RM (1996) Chemical physics of nanostructured semiconductors. J Phys Chem 100:18445

    Article  CAS  Google Scholar 

  83. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9(1):1–12

    Article  CAS  Google Scholar 

  84. Chen C, Lu C, Chung Y, Jan J (2007) UV light induced photodegradation of malachite green on TiO2 nanoparticles. J Hazard Mater 141(3):520–528

    Article  CAS  Google Scholar 

  85. Faisal M, Tariq MA, Muneer M (2007) Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. J Dyes Pigments 72:233–239

    Article  CAS  Google Scholar 

  86. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Article  CAS  Google Scholar 

  87. Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Degradation of bisphenol A in water by TiO2 photocatalyst. Environ Sci Technol 35:2365–2368

    Article  CAS  Google Scholar 

  88. Kumar SG, Rao KSRK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351

    Article  CAS  Google Scholar 

  89. Look DC, Reynolds DC, Sizelove JR, Jones RL, Litton CW, Cantwell G, Harsch WC (1998) Electrical properties of bulk ZnO. Solid State Commun 105(6):399–401

    Article  CAS  Google Scholar 

  90. Chandiran AK, Jalebi MA, Nazeeruddin MK, Gratzel M (2014) Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8(3):2261–2268

    Article  CAS  Google Scholar 

  91. Kamat PV, Bedja I, Hotchandani S (1994) Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions. J Phys Chem 98(37):9137–9142

    Article  CAS  Google Scholar 

  92. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162(2–3):317–322

    Article  CAS  Google Scholar 

  93. Fenoll J, Ruiz E, Hellín P, Flores P, Navarro S (2011) Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere 85(8):262–1268

    Article  Google Scholar 

  94. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77(1):65–82

    Article  CAS  Google Scholar 

  95. Shafaei A, Nikazar M, Arami M (2010) Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalination 252(1–3):8–16

    Article  CAS  Google Scholar 

  96. Han J, Liu Y, Singhal N, Wang L, Gao W (2012) Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chem Eng J 213:150–162

    Article  CAS  Google Scholar 

  97. Movahedi M, Mahjoub AR, Janitabar-Darzi S (2009) Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2. JICS 6:570–577

    Article  CAS  Google Scholar 

  98. Mohabansi NP, Patil VB, Yenkie N (2011) A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst. Rasayan J Chem 4(4):814–819

    CAS  Google Scholar 

  99. Kamat PV, Huehn R, Nicolaescu R (2002) A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106(4):788–794

    Article  CAS  Google Scholar 

  100. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041

    Article  CAS  Google Scholar 

  101. Muruganandham M, Zhang Y, Suri R, Lee GJ, Chen PK, Hsieh SH, Sillanpyaa M, Wu JJ (2015) Environmental applications of ZnO materials. J Nanosci Nanotechnol 15(9):6900–6913

    Article  CAS  Google Scholar 

  102. Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun 48:2858–2860

    Article  CAS  Google Scholar 

  103. Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J Photochem Photobiol A Chem 115(2):175–183

    Article  CAS  Google Scholar 

  104. Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal A Gen 304:55–61

    Article  CAS  Google Scholar 

  105. Colon G, Hidalgo MC, Navio JA, Melian EP, Diaz OG, Rodriguez JMD (2008) Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Appl Catal B Environ 83:30–38

    Article  CAS  Google Scholar 

  106. Liao Y, Xie C, Liu Y, Huang Q (2013) Metal oxide-based photocatalysis: fundamentals and prospects for application. J Alloys Compd 550:190–197

    Article  CAS  Google Scholar 

  107. Daneshvar N, Aber S, Dorraji MSS, Khataee AR, Rasoulifard MH (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58(1):91–98

    Article  CAS  Google Scholar 

  108. El-Kemary M, El-Shamy H, El-Mehasseb I (2010) Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J Lumin 130:2327–2331

    Article  CAS  Google Scholar 

  109. Anju SG, Yesodharan S, Yesodharan EP (2012) Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem Eng J 189–190:84–93

    Article  CAS  Google Scholar 

  110. Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12:143–152

    Article  CAS  Google Scholar 

  111. Zhang Z, Hossain MF, Takahashi T (2010) Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl Catal B 95(3–4):423–429

    Article  CAS  Google Scholar 

  112. Cong Y, Chen M, Xu T, Zhang Y, Wang Q (2014) Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation. Appl Catal B 147:733–740

    Article  CAS  Google Scholar 

  113. Pradhan GK, Sahu N, Parida KM (2013) Fabrication of S, N co-doped α-Fe2O3 nanostructures: effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic active. RSC Adv 3:7912–7920

    Article  CAS  Google Scholar 

  114. Wu W, Jiang C, Roy VAL (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58

    Article  CAS  Google Scholar 

  115. Liu X, Chen K, Shim JJ, Huang J (2015) Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. J Saudi Chem Soc 19:479–484

    Article  Google Scholar 

  116. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  117. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  118. Gondal MA, Sayeed MN, Yamani ZH, Al-Arfaj AR (2009) Efficient removal of phenol from water using Fe2O3 semiconductor catalyst under UV laser irradiation. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(5):515–521

    Article  CAS  Google Scholar 

  119. Shao P, Ren Z, Tian J, Gao S, Luo X, Shi W, Yan B, Li J, Cui F (2017) Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3nanosheets with highly exposed (1 1 0) facets: a superior photocatalyst for degradation of bisphenol S. Chem Eng J 323:64–73

    Article  CAS  Google Scholar 

  120. Dou M, Persson C (2013) Comparative study of rutile and anatase SnO2 and TiO2: band-edge structures, dielectric functions, and polaron effects. J Appl Phys 113(2013):083703

    Article  CAS  Google Scholar 

  121. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110:2219–2226

    Article  CAS  Google Scholar 

  122. Madelung O, Rossler U, Schulz M (1998) Tin dioxide (SnO2) crystal structure, lattice parameters, thermal expansion non-tetrahedrally bonded elements and binary compounds I. Springer, Berlin, pp 1–2

    Book  Google Scholar 

  123. Mistry BV, Avasthi DK, Joshi US (2016) Tuning of optical and electrical properties of wide band gap Fe:SnO2/Li:NiO p–n junctions using 80 MeV oxygen ion beam. Appl Phys A Mater Sci Process 122:1024

    Article  CAS  Google Scholar 

  124. Zhang G, Xie C, Zhang S, Zhang S, Xiong Y (2014) Defect chemistry of the metal cation defects in the p-and n-doped SnO2 nanocrystalline films. J Phys Chem C 118:18097–18109

    Article  CAS  Google Scholar 

  125. Sanal KC, Jayaraj MK (2013) Growth and characterization of tin oxide thin films and fabrication of transparent p-SnO/n-ZnO p–n hetero junction. Mater Sci Eng B 178:816–821

    Article  CAS  Google Scholar 

  126. Zulfiqar Y, Yang J, Wang W, Ye Z, Ye JL (2016) Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles. J Mater Sci Mater Electron 27:12119–12127

    Article  CAS  Google Scholar 

  127. Paramarta V, Taufik A, Munisa L, Saleh R (2017) Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes. AIP Conf Proc 1788:030125

    Article  Google Scholar 

  128. Yashas SR, Shivaraju HP, Thinley T, Pushparaj KS, Maleki A, Shahmoradi B (2020) Facile synthesis of SnO2 2D nanoflakes for ultrasound‑assisted photodegradation of tetracycline hydrochloride. Int J Environ Sci Technol 17:2593–2604

    Article  CAS  Google Scholar 

  129. Viet PV, Thi CM, Hieu LV (2016) The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. Photochem Photobiol 87(2):267–274

    Google Scholar 

  130. Tahir MB, Ali S, Rizwan M (2019) A review on remediation of harmful dyes through visible light-driven WO3 photocatalytic nanomaterials. Int J Environ Sci Technol 16:4975–4988

    Article  CAS  Google Scholar 

  131. Aslam I, Cao C, Khan WS, Tanveer M, Abid M, Idrees F, Riasat R, Tahir M, Butta FK, Alia Z (2014) Synthesis of three-dimensional WO3 octahedra: characterization, optical and efficient photocatalytic properties. RSC Adv 4:37914–37920

    Article  CAS  Google Scholar 

  132. Huang J, Xiao L, Yang X (2013) WO3 nanoplates, Hierarchical flower-like assemblies and their photocatalytic properties. Mater Res Bull 48:2782–2785

    Article  CAS  Google Scholar 

  133. Nguyen TT, Nam S-N, Son J, Oh J (2019) Tungsten trioxide (WO3)-assisted photocatalytic degradation of amoxicillin by simulated solar irradiation. Sci Rep 9:9349

    Article  Google Scholar 

  134. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  135. Yu X, Hu Y, Zhou L, Cao F, Yang Y, Liang T, He J (2011) Research progress of nanostructured materials for heterogeneous catalysis. Curr Nanosci 7(4):11

    Article  Google Scholar 

  136. Xu Z, Meng X (2009) Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation. J Hazard Mater 168:747

    Article  CAS  Google Scholar 

  137. Falk GS, Borlaf M, Lopez-Munoz MJ, Farinas JC, Neto JBR, Moreno R (2018) Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin film. J Nanopart Res 20:23

    Article  CAS  Google Scholar 

  138. Liu Z, Zhang X, Nishimoto S, Murakami T, Fujishima A (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547

    Article  CAS  Google Scholar 

  139. Kansal SK, Sood S, Umar A, Mehta SK (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Compd 51:392–397

    Article  CAS  Google Scholar 

  140. Fang K, Wang Z, Zhang M, Wang A, Meng Z, Feng J (2013) Gelatin-assisted hydrothermal synthesis of single crystalline zinc oxide nanostars and their photocatalytic properties. J Colloid Interface Sci 402:68–74

    Article  CAS  Google Scholar 

  141. Kansal SK, Lamba R, Mehta SK, Umar A (2013) Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. Mater Lett 106:385–389

    Article  CAS  Google Scholar 

  142. Deng J, Liu J, Dai H, Wang W (2018) Preparation of α-Fe2O3 nanowires through electrospinning and their Ag3PO4 heterojunction composites with enhanced visible light photocatalytic activity. Ferroelectrics 528:58–65

    Article  CAS  Google Scholar 

  143. Wu S, Cao H, Yin S, Liu X, Zhang X (2009) Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J Phys Chem C 113:17893–17898

    Article  CAS  Google Scholar 

  144. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852

    Article  CAS  Google Scholar 

  145. Huang J, Guo X, Wang B, Li L, Zhao M, Dong L, Liu X, Huang Y (2015) Synthesis and photocatalytic activity of Mo-doped TiO2 nanoparticles. J Spectrosc 2015:681850

    CAS  Google Scholar 

  146. Qiu L, Luo X (2018) ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity. RSC Adv 8:4890–4894

    Article  Google Scholar 

  147. Bousslama W, Elhouichet H, Ferid M (2017) Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik 134:88–98

    Article  CAS  Google Scholar 

  148. Arshad M, Ehtisham-ul-Haque S, Bilal M, Ahmad N, Ahmad A, Abbas M, Nisar J, Khan MI, Nazir A, Ghaffar A, Iqbal M (2020) Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities evaluation. Mater Res Express 7:015407

    Article  CAS  Google Scholar 

  149. Wang Y, Chan K, Li X, So S (2006) Electrochemical degradation of 4-chlorophenol at nickel–antimony doped tin oxide electrode. Chemosphere 65:1087–1093

    Article  CAS  Google Scholar 

  150. Chen L, Li F, Ni B, Xu J, Fu Z, Lu Y (2012) Enhanced visible photocatalytic activity of hybrid Pt/α-Fe2O3 nanorods. RSC Adv 2:10057–10063

    Article  CAS  Google Scholar 

  151. Xie W, Li R, Xu Q (2018) Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci Rep 8:1–10

    Article  Google Scholar 

  152. Maragatha J, Rani C, Rajendran S, Karuppuchamy S (2017) Microwave synthesis of nitrogen doped Ti4O7 for photocatalytic applications. Phys E 93:78–82

    Article  CAS  Google Scholar 

  153. Kubacka A, Munoz-Batista MJ, Ferrer M, Fernandez-Garcia M (2018) Er-W codoping of TiO2-anatase: structural and electronic characterization and disinfection capability under UV-vis, and near-IR excitation. Appl Catal B Environ 228:113–129

    Article  CAS  Google Scholar 

  154. Zhong JB, Li JZ, He XY, Zeng J, Lu Y, Hu W, Lin K (2012) Improved photocatalytic performance of Pd-doped ZnO. Curr Appl Phys 12:998–1001

    Article  Google Scholar 

  155. Kaur A, Gupta G, Ibhadon AO, Salunke DB, Sinha ASK, Kansal SK (2018) A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. J Environ Chem Eng 6(3):3621–3630

    Article  CAS  Google Scholar 

  156. Qiu Y, Yang M, Fan H, Xu Y, Shao Y, Yang X, Yang S (2013) Synthesis and characterization of nitrogen doped ZnO tetrapods and application in photocatalytic degradation of organic pollutants under visible light. Mater Lett 99:105–107

    Article  CAS  Google Scholar 

  157. Fadavieslam MR (2016) Effect of Sb doping on the structural, electrical, and optical properties of SnO2 thin films prepared through spray pyrolysis. J Mater Sci Mater Electron 27:4943–4950

    Article  CAS  Google Scholar 

  158. Kuvarega AT, Krause RWM, Mamba BB (2012) Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of eosin yellow in water. J Nanopart Res 2012:776–779

    Article  CAS  Google Scholar 

  159. Chelli VR, Golder AK (2017) Bimetal doping on TiO2 for photocatalytic water treatment: a green route. Eur Water 58:53–60

    Google Scholar 

  160. Yan H, Kochuveedu ST, Quan LN, Lee SS, Kim DH (2013) Enhanced photocatalytic activity of C, F-codoped TiO2 loaded with AgCl. J Alloys Comp 560:20–26

    Article  CAS  Google Scholar 

  161. Benhebal H, Chaib M, Malengreaux C, Leonard A, Lambert SD, Leonard A, Crine M, Heinrichs B (2014) Visible-light photo-activity of alkali metal doped ZnO. J Taiwan Inst Chem Eng 45(1):249–253

    Article  CAS  Google Scholar 

  162. Lu J, Wang H, Peng D, Chen T, Dong S, Chang Y (2016) Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Phys E Low Dimens Syst Nanostruct 78:41

    Article  CAS  Google Scholar 

  163. Lamba R, Umar A, Mehta SK, Kansal SK (2015) ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. J Alloys Compd 653:327–333

    Article  CAS  Google Scholar 

  164. Wu C (2014) Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Appl Surf Sci 319:237

    Article  CAS  Google Scholar 

  165. Yousef A, Barakat NAM, Amna T, Unnithan AR, Al-Deyab SS, Yong Kim H (2012) Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J Lumin 132(7):1668–1677

    Article  CAS  Google Scholar 

  166. Sin J, Lam S, Lee K, Mohamed AR (2015) Preparation of cerium-doped ZnO hierarchical micro/nanospheres with enhanced photocatalytic performance for phenol degradation under visible light. J Mol Catal A Chem 409:1–10

    Article  CAS  Google Scholar 

  167. Wang H, Cai Y, Zhou J, Fang J, Yang Y (2017) Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance. Appl Surf Sci 402:31–40

    Google Scholar 

  168. Lan H, Li L, An X, Liu F, Chen C, Liu H (2017) Microstructure of carbon nitride affecting synergetic photocatalytic activity : hydrogen bonds vs. structural defects. Appl Catal B Environ 204:49–57

    Google Scholar 

  169. Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B Environ 206:406–416

    Article  CAS  Google Scholar 

  170. Yao J, Chen H, Jiang F, Jiao Z, Jin M (2017) Titanium dioxide and cadmium sulfide co-sensitized graphitic carbon nitride nanosheets composite photocatalysts with superior performance in phenol degradation under visible-light irradiation. J Colloid Interface Sci 490:154–162

    Article  CAS  Google Scholar 

  171. Heng H, Gan Q, Meng P, Liu X (2017) The visible-light-driven type III heterojunctionH3PW12O40/TiO2-In2S3: a photocatalysis composite with enhanced photocatalytic activity. J Alloy Comp 696:51–59

    Article  CAS  Google Scholar 

  172. Jiang J, Wang H, Chen X, Li S, Xie T, Wang D, Lin Y (2017) Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. J Colloid Interface Sci 494:130–138

    Article  CAS  Google Scholar 

  173. Li M, Liu H, Liu T, Qin Y (2017) Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3 + self doped TiO2 nanocrystals with individual exposed (001) and (101) facets. Mater Charact 124:136–144

    Article  CAS  Google Scholar 

  174. Lee H, Sai-Anand G, Komathi S, Gopalan AI, Kang SW, Lee KP (2015) Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO2 nanowires. J Hazard Mater 283:400–409

    Article  CAS  Google Scholar 

  175. Moniz SJA, Shevlin SA, An X, Guo ZX, Tang J (2014) Fe2O3-TiO2 nanocomposites for enhanced charge separation and photocatalytic activity. Chem Eur J 20:15571–15579

    Article  CAS  Google Scholar 

  176. Kumar N, Bhadwal AS, Mizaikoff B, Singh S, Kranz C (2019) Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: paracetamol. Sens Bio-Sens Res 24:100288

    Article  Google Scholar 

  177. Liu J, Xie F, Li R, Li T, Jia Z, Wang Y, Wang Y, Zhang X, Fan C (2019) TiO2-x/Ag3PO4 photocatalyst: oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Mater Sci Semicond Process 97:1–10

    Article  CAS  Google Scholar 

  178. Construction (2017) Construction of ZnO nanosheet arrays within BiVO4 particles on a conductive magnetically driven cilia film with enhanced visible photocatalytic activity. J Alloys Compd 690:953

    Article  CAS  Google Scholar 

  179. Zhang S, Li J, Niu H, Xu W, Xu J, Hu W, Wang X (2013) Visible-light photocatalytic degradation of methylene blue using SnO2/α-Fe2O3 hierarchical nanoheterostructures. ChemPlusChem 78(2):192–199

    Article  CAS  Google Scholar 

  180. Aslam I, Cao C, Tanveer M, Farooq MH, Khan WS, Tahir M, Idrees F, Khalid S (2015) A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 5:6019–6026

    Article  CAS  Google Scholar 

  181. Ramos-Delgado NA, Gracia-Pinilla MA, Maya-Trevino L, Hinojosa-Reyes L, Guzman-Mar JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263(1):36–44

    Article  CAS  Google Scholar 

  182. Sherly ED, Vijaya JJ, Kennedy LJ (2015) Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2,4-dichlorophenol. Chin J Catal 36:1263

    Article  CAS  Google Scholar 

  183. Feng Q, Li SY, Ma WH, He X, Zou YX (2017) Hydrothermal synthesis of flower-like CuO/ZnO/SiNWs photocatalyst for degradation of r6g under visible light irradiation. Key Eng Mater 727:847

    Article  Google Scholar 

  184. Kaur A, Umar A, Anderson WA, Kansal SK (2018) Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J Photochem Photobiol A 360:34–43

    Article  CAS  Google Scholar 

  185. Chu L, Zhang J, Wu Z, Wang C, Sun Y, Dong S, Sun J (2020) Solar-driven photocatalytic removal of organic pollutants over direct Z-scheme coral-branch shape Bi2O3/SnO2 composites. Mater Charact 159:110036

    Article  CAS  Google Scholar 

  186. Peng L, Zheng R, Feng D, Yu H, Dong X (2020) Synthesis of eco-friendly porous g-C3N4/SiO2/SnO2 composite with excellent visible-light responsive photocatalysis. Arab J Chem 13(2):4275–4285

    Article  CAS  Google Scholar 

  187. Priya A, Senthil RA, Selvi A, Arunachalam P, Kumar CKS, Madhavan J, Boddula R, Pothu R, Al-Mayouf AM (2020) A study of photocatalytic and photoelectrochemical activity of as-synthesized WO3/g-C3N4 composite photocatalysts for AO7 degradation. Mater Sci Energy Technol 3:43–50

    CAS  Google Scholar 

  188. Liu Y, Li M, Zhang Q, Qin P, Wang X, He G, Li L (2020) One‐step synthesis of a WO3‐CuS nanosheet heterojunction with enhanced photocatalytic performance for methylene blue degradation and Cr(VI) reduction. Chem Technol Biotechnol 95(3):665–674

    Article  CAS  Google Scholar 

  189. Pudukudy M, Shan S, Miao Y, Gu B, Jia Q (2020) WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium. Colloids Surf A Physicochem Eng Asp 589:124457

    Article  CAS  Google Scholar 

  190. Wongaree M, Chiarakorn S, Chuangchote S, Sagawa T (2016) Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation. Environ Sci Pollut Res 23:21395–21406

    Article  CAS  Google Scholar 

  191. Zhou W, Pan K, Qu Y, Sun F, Tian C, Ren Z, Fu H (2010) Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81(5):555–561

    Article  CAS  Google Scholar 

  192. Basha S, Barr C, Keane D, Nolan K, Morrissey A, Oelgemoller M, Tobin JM (2011) On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent (IPCA): experimental studies and kinetics analysis. Photochem Photobiol Sci 10:1014–1022

    Article  CAS  Google Scholar 

  193. Pastrana-Martinez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falaras P, Silva AMT (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ 2012:123–124

    CAS  Google Scholar 

  194. Macias-Tamez R, Villanueva-Rodriguez M, Ramos-Delgado NA, Maya-Trevino L, Hernandez-Ramirez A (2017) Comparative study of the photocatalytic degradation of the herbicide 2,4-D Using WO3/TiO2 and Fe2O3/TiO2 as catalysts. Water Air Soil Pollut 228:379

    Article  CAS  Google Scholar 

  195. Chen Y, Wu Q, Wang J, Song Y (2019) The fabrication of magnetic recyclable nitrogen-doped titanium dioxide/calcium ferrite/diatomite heterojunction nanocomposite for improved visible-light-driven degradation of tetracycline. J Chem Technol Biotechnol 94:2702–2712

    Article  CAS  Google Scholar 

  196. Lu C, Guan W, Zhang G, Ye L, Zhou Y, Zhang X (2013) TiO2 /Fe2O3/CNTs magnetic photocatalyst: a fast and convenient synthesis and visible-light-driven photocatalytic degradation of tetracycline. Micro Nano Lett 8:749–752

    Article  CAS  Google Scholar 

  197. Hu Z, Wang X, Dong H, Li S, Li X, Li L (2017) Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2 atmosphere: influencing factors, kinetics and mechanism. J Hazard Mater 340:1–15

    Article  CAS  Google Scholar 

  198. Sood S, Mehta SK, Sinha ASK, Kansal SK (2016) Bi2O3/TiO2 heterostructures: synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin. Chem Eng J 290:45–52

    Article  CAS  Google Scholar 

  199. Luo L, Long J, Zhao S, Dai J, Ma L, Wang H, Xia L, Shu L, Jiang F (2019) Effective visible-light-driven photocatalytic degradation of 17α-ethynylestradiol by crosslinked CdS nano-rod/TiO2 (B) nano-belt composite. Process Saf Environ Prot 130:77–851

    Article  CAS  Google Scholar 

  200. Kandi D, Behera A, Martha S, Naik B, Parida KM (2019) Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. J Environ Chem Eng 7:102821

    Article  CAS  Google Scholar 

  201. Sharma S, Ibhadon AO, Francesconi MG, Mehta SK, Elumalai S, Kansal SK, Umar A, Baskoutas S (2020) Bi2WO6/C-Dots/TiO2: a novel z-scheme photocatalyst for the degradation of fluoroquinolone levofloxacin from aqueous medium. Nano 10(5):910

    CAS  Google Scholar 

  202. Kaur A, Anderson WA, Tanvir S, Kansal SK (2019) Solar light active silver/iron oxide/zinc oxide heterostructure for photodegradation of ciprofloxacin, transformation products and antibacterial activity. J Colloid Interface Sci 557:236–253

    Article  CAS  Google Scholar 

  203. Lam S, Sin J, Abdullah AZ, Mohamed AR (2013) Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites. J Mol Catal A Chem 370:123

    Article  CAS  Google Scholar 

  204. Liu H, Zhai H, Hu C, Yang J, Liu Z (2017) Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability. Nanoscale Res Lett 12:466

    Article  CAS  Google Scholar 

  205. Ritika M, Kaur A, Umar SK, Mehta S, Singh SK, Kansal HF, Alothman OY (2018) Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst. Materials (Basel) 11(11):2254

    Article  CAS  Google Scholar 

  206. Lavand AB, Malghe YS (2015) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposites. J Saudi Chem Soc 19(5):471–478

    Article  Google Scholar 

  207. Lamba R, Umar A, Mehta SK, Kansal SK (2017) Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Sep Purif Technol 183:341–349

    Article  CAS  Google Scholar 

  208. Wang T, Quan W, Jiang D, Chen L, Li D, Meng S, Chen M (2016) Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity. Chem Eng J 300:280–290

    Article  CAS  Google Scholar 

  209. Liu X, Jin A, Jia Y, Xia T, Deng C, Zhu M, Chen C, Chen X (2017) Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl Surf Sci 405:359–371

    Article  CAS  Google Scholar 

  210. Zhang L, Niu CG, Liang C, Wen X, Huang D, Guo H, Zhao X, Zeng G (2018) One-step in situ synthesis of CdS/SnO2 heterostructure with excellent photocatalytic performance for Cr(VI) reduction and tetracycline degradation. Chem Eng J 352:863–875

    Article  CAS  Google Scholar 

  211. Lamba R, Umar A, Mehta SK, Kansal SK (2015) Well-crystalline porous ZnO–SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 131:490–498

    Article  CAS  Google Scholar 

  212. Umukoro EH, Kumar N, Ngila JC, Arotiba OA (2018) Expanded graphite supported p-n MoS2-SnO2 heterojunction nanocomposite electrode for enhanced photo-electrocatalytic degradation of a pharmaceutical pollutant. J Electroanal Chem 827:193–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to Panjab University Chandigarh and A.C. Joshi Library, P.U. Chandigarh, for providing the online resources for writing this book chapter in the pandemic crisis. The authors also gratefully acknowledge the MHRD. Govt. of India’s, TEQIP-III grant (2017–2020) and RUSA grant of Panjab University Chandigarh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafali, Singh, S., Kansal, S.K. (2021). Nanostructured Photocatalysts for Degradation of Environmental Pollutants. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_26

Download citation

Publish with us

Policies and ethics