Skip to main content

Nanobiosensors for Biomedical Applications

  • Chapter
  • First Online:
Nanotechnology Applications in Health and Environmental Sciences

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanobiosensors have several advantages such as fast response, easy use, high sensitivity, specificity, real-time analysis, and portability. Over the last decade, the nanobiosensor realm has extended, and they have already showed a wide range of fields including biomedical applications, environmental analysis, food safety, and so on. A molecular imprinting method is one of the enthralling modification methods that uses molecules as templates to create cavities for recognition of targets in the polymer. It provides a large range of variability to imprint target molecules with different molecular sizes, structure, and physical and chemical properties. Owing to their unique features such as selectivity, robustness, low cost, stability, and reusability of this method, molecularly imprinted polymers have become inviting and been applied in a wide range of applications in various fields. Herein, this chapter is prepared according to the fundamentals of molecular imprinting methods, nanobiosensors, the recent applications of molecularly imprinted nanobiosensors for biomedical applications, and also conclusion and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA Jr, Pan D, Locascio L, Walker A, Barron F, Goldsmith BR (2018) Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron 100:85–88

    Article  CAS  PubMed  Google Scholar 

  • Algieri C, Drioli E, Guzzo L, Donato L (2014) Bio-mimetic sensors based on molecularly imprinted membrane. Sensors 14(8):13863–13912

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao H, Yang B, Zhang X, Lei L, Li Z (2017) Bacteria-templated fabrication of a charge heterogeneous polymeric interface for highly specific bacterial recognition. Chem Commun 53:2319–2322

    Article  CAS  Google Scholar 

  • Battal D, Akgonullu S, Yalcin MS, Yavuz H, Denizli A (2018) Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens Bioelectron 111:10–17

    Article  CAS  PubMed  Google Scholar 

  • Cegłowski M, Kurczewska J, Ruszkowski P, Libersk J, Schroeder G (2019) The influence of cross-linking agent onto adsorption properties, release behavior and cytotoxicity of doxorubicin-imprinted microparticles. Colloids Surf B: Biointerfaces 182:110379

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Shin DH, Oh J, An JH, Lee JS, Jang J (2018) Multidimensional conductive nanofilm-based flexible aptasensor for ultrasensitive and selective HBsAg detection. ACS Appl Mater Interfaces 10(34):28412–28419

    Article  CAS  PubMed  Google Scholar 

  • Dai B, Wang L, Wang Y, Yu G, Huang X (2018) Single-cell nanometric coating towards whole-cell-based biodevices and biosensors. ChemistrySelect 3(25):7208–7221

    Article  CAS  Google Scholar 

  • Diken Gür S, Bakhshpour M, Denizli A (2019) Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. Mater Sci Eng C 104:109869

    Google Scholar 

  • Diltemiz SE, Denizli A, Ersöz A, Say R (2008) Molecularly imprinted ligand-exchange recognition assay of DNA by SPR system using guanosine and guanine recognition sites of DNA. Sensors Actuators B Chem 133:484–488

    Article  CAS  Google Scholar 

  • Erdem Ö, Saylan Y, Cihangir N, Denizli A (2019) Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection. Biosens Bioelectron 126:608–614

    Article  CAS  PubMed  Google Scholar 

  • Guo X (2012) Surface plasmon resonance based biosensor technique: a review. J Biophotonics 5:483

    Article  CAS  PubMed  Google Scholar 

  • He Y, Yang T, Mo H, Chen T, Feng J, Zhang W (2019) Low-cost potentiometric sensor based on a molecularly imprinted polymer for the rapid determination of matrine in herbal medicines. Instrum Sci Technol 47(6):581–596

    Article  CAS  Google Scholar 

  • Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniest J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ (2015) Blue marble health and “the big three diseases”: HIV/AIDS, tuberculosis, and malaria. Microbes Infect 17(8):539–541

    Article  PubMed  Google Scholar 

  • Huynh TP, Bikram CKC, Lisowski W, D’Souza F, Kutner W (2013) Molecularly imprinted polymer of bis(2,2′-bithienyl)methanes for selective determination of adrenaline. Bioelectrochemistry 93:37–45

    Article  CAS  PubMed  Google Scholar 

  • Inci F, Saylan Y, Kojouri AM, Ogut MG, Denizli A, Demirci U (2020) A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl Mater Today 18:100478

    Article  Google Scholar 

  • Kartal F, Çimen D, Bereli N, Denizli A (2019) Molecularly imprinted polymer based quartz crystal microbalance sensor for the clinical detection of insulin. Mater Sci Eng C 97:730–737

    Article  CAS  Google Scholar 

  • Khan IM, Niazi S, Khan MKI, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z (2019) Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC Trends Anal Chem 119:115637

    Article  CAS  Google Scholar 

  • Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB (2017) A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron 91:276–283

    Article  CAS  PubMed  Google Scholar 

  • Koca Esentürk M, Akgönüllü S, Yılmaz F, Denizli A (2019) Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection. J Biomater Sci Polym Ed 30(8):646–661

    Article  CAS  Google Scholar 

  • Koyun S, Akgönüllü S, Yavuz H, Erdem A, Denizli A (2019) Surface plasmon resonance aptasensor for detection of human activated protein C. Talanta 194:528–533

    Article  CAS  PubMed  Google Scholar 

  • La Spada L, Vegni L (2018) Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 11(4):603–624

    Article  PubMed Central  CAS  Google Scholar 

  • Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang C, Liu K, Wang H, Lu C, Li H, Hua K, Zhu K, Hui W, Cui Y, Zhang X (2018) Multiple SNPs detection based on lateral flow assay for phenylketonuria diagnostic. Anal Chem 90(5):3430–3436

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Shen XL, Zeng Q, Wang HS, Wang LS (2017) A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta 164:121–127

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M (2019) Challenges and advances in the fabrication of monolithic bioseparation materials and their applications in proteomics research. Adv Mater 31:1902023

    Article  CAS  Google Scholar 

  • Martins GV, Marques AC, Fortunato E, Sales MGF (2016) 8-hydroxy-2′-deoxyguanosine (8-OHdG) biomarker detection down to picoMolar level on a plastic antibody film. Biosens Bioelectron 86:225–234

    Article  CAS  PubMed  Google Scholar 

  • Nematollahzadeh A, Lindemann P, Sun W, Stute J, Lütkemeyer D, Sellergren B (2014) Robust and selective nano cavities for protein separation: an interpenetrating polymer network modified hierarchically protein imprinted hydrogel. J Chromatogr A 1345:154–163

    Article  CAS  PubMed  Google Scholar 

  • Nutiu R, Billen LP, Li Y (2006) Fluorescence-signaling nucleic acid-based sensors, in nucleic acid switches and sensors. In: Silverman SK. (ed) Landes bioscience and. Springer, Boston, pp 49–72

    Google Scholar 

  • Pang Y, Jian J, Tu T, Yang Z, Ling J, Li Y, Wang X, Qiao Y, Tian H, Yang Y, Ren TL (2018) Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens Bioelectron 116:123–129

    Article  CAS  PubMed  Google Scholar 

  • Piletsky SA, Turner WN, Laitenberger P (2006) Molecularly imprinted polymers in clinical diagnostics-future potential and existing problems. Med Eng Phys 28:971–977

    Article  PubMed  Google Scholar 

  • Regan B, Boyle F, Kennedy R, Collins D (2019) Evaluation of molecularly imprinted polymers for point-of-care testing for cardiovascular disease. Sensors 19(16):3485

    Article  CAS  PubMed Central  Google Scholar 

  • Rico-Yuste A, Carrasco S (2019) Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers 11(7):1173

    Article  PubMed Central  CAS  Google Scholar 

  • Saylan Y, Denizli A (2018) Molecular fingerprints of hemoglobin on a nanofilm chip. Sensors 18(9):3016

    Article  CAS  PubMed Central  Google Scholar 

  • Saylan Y, Yılmaz F, Derazshamshir A, Yılmaz E, Denizli A (2017a) Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J Mol Recognit 30:1–7

    Article  CAS  Google Scholar 

  • Saylan Y, Yılmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A (2017b) Molecularly imprinting of macromolecules for sensors applications. Sensors 17(4):898–928

    Article  CAS  PubMed Central  Google Scholar 

  • Saylan Y, Tamahkar E, Denizli A (2017c) Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. J Biomater Sci Polym Ed 28:1950–1965

    Article  CAS  PubMed  Google Scholar 

  • Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A (2019a) Molecularly imprinted polymer based sensors for medical applications. Sensors 19(6):1279

    Article  CAS  PubMed Central  Google Scholar 

  • Saylan Y, Erdem Ö, Cihangir N, Denizli A (2019b) Detecting fingerprints of waterborne bacteria on a sensor. Chemosensors 7(3):33

    Article  CAS  Google Scholar 

  • Saylan Y, Erdem Ö, Ünal S, Denizli A (2019c) An alternative medical diagnosis method: biosensors for virus detection. Biosensors 9(2):65

    Article  CAS  PubMed Central  Google Scholar 

  • Shi W, Zhang SQ, Li KB, Jia WP, Han DM (2018) Integration of mixed-mode chromatography and molecular imprinting technology for double recognition and selective separation of proteins. Sep Purif Technol 202:165–173

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J (2020) Biological biosensors for monitoring and diagnosis. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial biotechnology: basic research and applications. Springer, Singapore, pp 317–336

    Chapter  Google Scholar 

  • Sönmezler M, Özgür E, Yavuz H, Denizli A (2019) Quartz crystal microbalance based histidine sensor. Artif Cells Nanomed Biotechnol 47(1):221–227

    Article  PubMed  CAS  Google Scholar 

  • Tokel O, Yildiz UH, Inci F, Durmus NG, Ekiz OO, Turker B, Cetin C, Rao S, Sridhar K, Natarajan N, Shafiee H, Dana A, Demirci U (2015) Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5:9152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topçu AA, Özgür E, Yılmaz F, Bereli N, Denizli A (2019) Real time monitoring and label free creatinine detection with artificial receptors. Mater Sci Eng B 244:6–11

    Article  CAS  Google Scholar 

  • Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens 32:378–385

    Article  CAS  Google Scholar 

  • Wang Z, Jinlong L, An Z, Kimura M, Ono T (2019) Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor. Process Biochem 79:57–64

    Article  CAS  Google Scholar 

  • Weerathunge P, Ramanathan R, Torok V, Hodgson K, Xu Y, Goodacre R, Behera BK, Bansal V (2019) Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal Chem 91(5):3270–3276

    Article  CAS  PubMed  Google Scholar 

  • You M, Yang S, Jiao F, Yang LZ, Zhang F, He PG (2016) Label-free electrochemical multi-sites recognition of G-rich DNA using multi-walled carbon nanotubes–supported molecularly imprinted polymer with guanine sites of DNA. Electrochim Acta 199:133–141

    Article  CAS  Google Scholar 

  • Zhao K, Lin B, Cui W, Feng L, Chen T, Wei J (2014) Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene. Talanta 121:256–262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Denizli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saylan, Y., Yılmaz, F., Denizli, A. (2021). Nanobiosensors for Biomedical Applications. In: Saglam, N., Korkusuz, F., Prasad, R. (eds) Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64410-9_8

Download citation

Publish with us

Policies and ethics