Skip to main content

Molecularly Imprinted Polymers: Promising Advanced Materials for In Vivo Sensing

  • Protocol
  • First Online:
Microelectrode Biosensors

Part of the book series: Neuromethods ((NM,volume 80))

Abstract

Molecularly imprinted polymers are now well known as synthetic polymeric receptors or robust artificial antibodies (“plastibodies”) and have attracted considerable attention from the scientific and industrial community due to their inherent simplicity, reusability, robust polymer network, and cost-effectiveness. In this chapter, the concept and principles of molecularly imprinted polymers are introduced and illustrated. Their fascinating properties are further described and summarized with a focus on the medical/biological aspects followed by a comprehensive review of published research results on the sensor applications of molecularly imprinted polymers as biomaterials and/or biocompatible materials. In addition, a future outlook is presented demonstrating the great potentials of molecularly imprinted polymers for in vivo sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piletsky SA, Turner APF (2006) Molecular imprinting of polymers. Landes Bioscience, Georgetown, TX

    Google Scholar 

  2. Yan M, Ramström O (2005) Molecularly imprinted materials-science and technology, 1st edn. Marcel Dekker, New York, NY

    Google Scholar 

  3. Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26:218–224

    Article  PubMed  CAS  Google Scholar 

  4. Ge Y, Turner APF (2009) Molecularly imprinted sorbent assays: recent developments and applications. Chem Eur J 15:8100–8107

    Article  PubMed  CAS  Google Scholar 

  5. Haupt K (2003) Molecularly imprinted ­polymers: the next generation. Anal Chem 75:376A–383A

    Article  PubMed  CAS  Google Scholar 

  6. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    Article  PubMed  CAS  Google Scholar 

  7. Polyakov MV (1931) Adsorption properties and structure of silica gel. Zh Fiz Khim 2:799–805

    Google Scholar 

  8. Dickey F (1949) The preparation of specific adsorbents. Proc Natl Acad Sci USA 35:227–229

    Article  PubMed  CAS  Google Scholar 

  9. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 44:4329–4332

    Article  Google Scholar 

  10. Suryanarayanan V, Wu CT, Ho KC (2010) Molecularly imprinted electrochemical sensors. Electroanalysis 22:1795–1811

    Article  CAS  Google Scholar 

  11. Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem 182:687–692

    Article  CAS  Google Scholar 

  12. Sellergren B, Andersson L (1990) Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. J Org Chem 55:3381–3383

    Article  CAS  Google Scholar 

  13. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    Article  PubMed  CAS  Google Scholar 

  14. Sellergren B (1999) Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. Trends Anal Chem 18:164–174

    Article  CAS  Google Scholar 

  15. Matsui J, Miyoshi Y, Doblhoff-Dier O, Takeuchi T (1995) A molecularly imprinted synthetic polymer receptor selective for Atrazine. Anal Chem 67:4404–4408

    Article  CAS  Google Scholar 

  16. Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of the molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778

    Article  PubMed  CAS  Google Scholar 

  17. Sellergren B, Allender CJ (2005) Molecularly imprinting polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741

    Article  PubMed  CAS  Google Scholar 

  18. Fujii Y, Matsutani K, Kikuchi K (1985) Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex. J Chem Soc Chem Commun 7:415–417

    Article  Google Scholar 

  19. Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28:629–637

    Article  PubMed  CAS  Google Scholar 

  20. Guo TY, Xia YQ, Hao GJ, Zhang BH, Fu GQ, Yuan Z, He BL, Kennedy JF (2005) Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydr Polym 62:214–221

    Article  CAS  Google Scholar 

  21. Ou SH, Wu MC, Chou TC, Liu CC (2004) Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal Chim Acta 504:163–166

    Article  CAS  Google Scholar 

  22. Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng 27:90–99

    Article  Google Scholar 

  23. Breton F, Euzet P, Piletsky SA, Giardi MT, Rouillon R (2006) Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge. Anal Chim Acta 569:50–57

    Article  CAS  Google Scholar 

  24. Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens Bioelectron 18:119–127

    Article  PubMed  CAS  Google Scholar 

  25. Valero-Navarro A, Salinas-Castillo A, Fernández-Sánchez JF, Segura-Carretero A, Mallavia R, Fernández-Gutiérrez A (2009) The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosens Bioelectron 24:2305–2311

    Article  PubMed  CAS  Google Scholar 

  26. Farré M, Kantiani L, Pérez S, Barceló D (2009) Sensors and biosensors in support of EU directives. Trends Anal Chem 28:170–185

    Article  Google Scholar 

  27. Kriz D, Kempe M, Mosbach K (1996) Introduction of molecularly imprinted polymers as recognised elements in conductometric chemical sensors. Sens Actuators B Chem 33:178–181

    Article  Google Scholar 

  28. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446–468

    Article  PubMed  CAS  Google Scholar 

  29. Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2004) Electrochemical sensors based on molecularly imprinted polymers. Trends Anal Chem 23:36–48

    Article  Google Scholar 

  30. Jenik M, Seifner A, Krassnig S, Seidler K, Lieberzeit PA, Dickert FL, Jungbauer C (2009) Sensors for bioanalytes by imprinting—polymers mimicking both biological receptors and the corresponding bioparticles. Biosens Bioelectron 25:9–14

    Article  PubMed  CAS  Google Scholar 

  31. Ramsden JJ (1994) Experimental methods for investigating protein adsorption kinetics at surfaces. Q Rev Biophys 27:41–105

    Article  PubMed  CAS  Google Scholar 

  32. Lin TY, Hu CH, Chou TC (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 20:75–81

    Article  PubMed  CAS  Google Scholar 

  33. Tai DF, Lin CY, Wu TZ, Chen LK (2005) Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem 77:5140–5143

    Article  PubMed  CAS  Google Scholar 

  34. Thoelen R, Vansweevelt R, Duchateau J, Horemans F, D’Haen J, Lutsen L, Vanderzande D, Ameloot M, VandeVen M, Cleij TJ, Wagner P (2008) A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens Bioelectron 23:913–918

    Article  PubMed  CAS  Google Scholar 

  35. Yoshimi Y, Narimatsu A, Nakayama K, Sekine S, Hattori K, Sakai K (2009) Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J Artif Organs 12:264–270

    Article  PubMed  CAS  Google Scholar 

  36. Ogiso M, Minoura N, Shinbo T, Shimizu T (2006) Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer. Biomaterials 27:4177–4182

    Article  PubMed  CAS  Google Scholar 

  37. Wu N, Feng L, Tan Y, Hu J (2009) An optical reflected device using a molecularly imprinted polymer film sensor. Anal Chim Acta 653:103–108

    Article  PubMed  CAS  Google Scholar 

  38. González GP, Hernando PF, Alegría JSD (2009) An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane. Anal Chim Acta 638:209–212

    Article  Google Scholar 

  39. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  PubMed  CAS  Google Scholar 

  40. Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensor. Biomaterials 31:4944–4951

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ge, Y., Akhtar, S., Mirza, F., Piletsky, S., Wang, S., Fei, D. (2013). Molecularly Imprinted Polymers: Promising Advanced Materials for In Vivo Sensing. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics