Skip to main content

Bioactive Phytochemicals from Hazelnut (Corylus) Oil-Processing By-Products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 95 Accesses

Abstract

Hazelnut (Corylus, birch family) is one of the most treated fruits worldwide. Studies have revealed that hazelnut and their byproducts are associated with different health-promising effects, mostly due to their high levels of biologically active phytochemicals, protein, monounsaturated fatty acids, lipophilic nutrients, and dietary fibers. Hazelnut fruits are often processed for different products, such as oil, chocolate truffles, confectionary, and salad dressing, resulting in so-called hazelnut processing by-products (HPB), including peel, cake, nutshell, starch, and other solids. Generally, it contains 55–65% oil, 12–15% protein, and 10–16% carbohydrates. Meanwhile, the lack of systematic information on benefits significantly hinders the production of HPB as a sustainable plant. This chapter summarizes the chemical structure, HPB-forms, phytochemical compositions, metabolism, scientific aspects (nutritional, microbial, and sensorial aspects), and health benefits of HPB. These asserted health effects involve antiobesity, anti-inflammatory, and other linked effects. Though the present proof is encouraging, more clinical trials are required to determine the role of HPB in boosting human health. Hazelnut allergy, protein denaturation, and oxidative stability of HPB are the main technical concerns that should be considered before its application as human food. Moreover, the mechanisms by which they discuss the health benefits, the bioavailability experiments on the active components of HPB, are scarce. The in-depth knowledge of HPB would help value its use in a more economical and environmentally sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sen D, Kahveci DJW, Valorization B (2020) Production of a protein concentrate from hazelnut meal obtained as a hazelnut oil industry by-product and its application in a functional beverage. Waste Biomass Valoriz 11(10):5099–5107

    Article  CAS  Google Scholar 

  2. Acan BG et al (2021) Physicochemical properties of chocolate spread with hazelnut cake: comparative study and optimization. LWT 147:111548

    Article  CAS  Google Scholar 

  3. Delgado T et al (2010) Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Ind Crop Prod 32(3):621–626

    Article  Google Scholar 

  4. Xu YX, Hanna MA, Josiah SJ (2007) Hybrid hazelnut oil characteristics and its potential oleochemical application. Ind Crop Prod 26(1):69–76

    Article  CAS  Google Scholar 

  5. Shahidi F et al (2007) Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem 55(4):1212–1220

    Article  CAS  PubMed  Google Scholar 

  6. Alasalvar C et al (2006) Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. J Agric Food Chem 54(13):4826–4832

    Article  CAS  PubMed  Google Scholar 

  7. Saricaoglu FT et al (2018) Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. J Food Eng 233:98–108

    Article  CAS  Google Scholar 

  8. Tatar F et al (2015) Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties. J Food Sci Technol 52(2):1024–1031

    Article  CAS  PubMed  Google Scholar 

  9. Aydemir LY et al (2014) Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocoll 36:130–142

    Article  CAS  Google Scholar 

  10. Sarkis JR et al (2014) Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J Am Oil Chem Soc 91(10):1773–1782

    Article  CAS  Google Scholar 

  11. Gorissen SHM et al (2018) Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50(12):1685–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato H et al (2018) Nutritionally non-essential amino acids are dispensable for whole-body protein synthesis after exercise in endurance athletes with an adequate essential amino acid intake. Amino Acids 50(12):1679–1684

    Article  CAS  PubMed  Google Scholar 

  13. Gülseren İ, ÇAkir B (2019) Preliminary investigations in vitro ACE-inhibitory activities of tryptic peptides produced from cold press deoiled hazelnut meals. Gıda 44(2):309–317

    Google Scholar 

  14. Fleischer DM (2007) The natural history of peanut and tree nut allergy. Curr Allergy Asthma Rep 7(3):175–181

    Article  CAS  PubMed  Google Scholar 

  15. Siriwardhana SS, Shahidi F (2002) Antiradical activity of extracts of almond and its by-products. J Am Oil Chem Soc 79(9):903–908

    Article  CAS  Google Scholar 

  16. Yu J, Ahmedna M, Goktepe I (2005) Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem 90(1–2):199–206

    Article  CAS  Google Scholar 

  17. Senter S, Horvat R, Forbus WR (1983) Comparative GLC-MS analysis of phenolic acids of selected tree nuts. J Food Sci 48(3):798–799

    Article  CAS  Google Scholar 

  18. Cuvelier M-E et al (1992) Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 56(2):324–325

    Article  CAS  Google Scholar 

  19. Masullo M et al (2017) LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res Int 101:180–187

    Article  CAS  PubMed  Google Scholar 

  20. Yuan B et al (2018) Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem 244:7–15

    Article  CAS  PubMed  Google Scholar 

  21. Del Rio D et al (2011) Polyphenolic composition of hazelnut skin. J Agric Food Chem 59(18):9935–9941

    Article  PubMed  Google Scholar 

  22. Yurttas H, Schafer H, Warthesen JJ (2000) Antioxidant activity of nontocopherol hazelnut (Corylus spp.) phenolics. J Food Sci 65(2):276–280

    Article  CAS  Google Scholar 

  23. Amaral JS et al (2005) Phenolic profile of hazelnut (Corylus avellana L.) leaves cultivars grown in Portugal. Nat Prod Res 19(2):157–163

    Article  CAS  PubMed  Google Scholar 

  24. Rivas S, Moure A, Parajó JC (2020) Pretreatment of hazelnut shells as a key strategy for the solubilization and valorization of hemicelluloses into bioactive compounds. Agronomy 10(6):760

    Article  CAS  Google Scholar 

  25. Vasquez WV et al (2021) Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J Supercrit Fluids 171:105188

    Article  CAS  Google Scholar 

  26. Shahidi F, Alasalvar C, Liyana-Pathirana CM (2007) Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem 55(4):1212–1220

    Article  CAS  PubMed  Google Scholar 

  27. Ojeda-Amador RM et al (2019) Chemical characterization of virgin almond and hazelnut oils and their by-products. Eur J Lipid Sci Technol 121(11):1900114

    Article  CAS  Google Scholar 

  28. Pérez-Armada L et al (2019) Extraction of phenolic compounds from hazelnut shells by green processes. J Food Eng 255:1–8

    Article  Google Scholar 

  29. Wu X et al (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52(12):4026–4037

    Article  CAS  PubMed  Google Scholar 

  30. Alasalvar C et al (2009) Antioxidant activity of hazelnut skin phenolics. J Agric Food Chem 57(11):4645–4650

    Article  CAS  PubMed  Google Scholar 

  31. Piccinelli AL et al (2016) HRMS profile of a hazelnut skin proanthocyanidin-rich fraction with antioxidant and anti-Candida albicans activities. J Agric Food Chem 64(3):585–595

    Article  CAS  PubMed  Google Scholar 

  32. Contini M et al (2008) Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem 110(3):659–669

    Article  CAS  Google Scholar 

  33. Wijeratne SS et al (2006) Antioxidant polyphenols in almond and its coproducts. J Agric Food Chem 54(2):312–318

    Article  CAS  PubMed  Google Scholar 

  34. Decker EA et al (2001) Inhibition of low-density lipoprotein oxidation by carnosine and histidine. J Agric Food Chem 49(1):511–516

    Article  CAS  PubMed  Google Scholar 

  35. Aruoma OI et al (1998) Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. J Agric Food Chem 46(12):5181–5187

    Article  CAS  Google Scholar 

  36. Spagnuolo L et al (2021) Antioxidant and antiglycation effects of polyphenol compounds extracted from hazelnut skin on advanced glycation end-products (ages) formation. Antioxidants 10(3):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Atalar I et al (2019) Influence of thermosonication (TS) process on the quality parameters of high pressure homogenized hazelnut milk from hazelnut oil by-products. J Food Sci Technol 56(3):1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gul O et al (2018) Effect of multi-pass high pressure homogenization on physicochemical properties of hazelnut milk from hazelnut cake: an investigation by response surface methodology. J Food Process Preserv 42(5):e13615

    Article  Google Scholar 

  39. Spagnuolo L et al (2021) Antioxidant and antiglycation effects of polyphenol compounds extracted from hazelnut skin on advanced glycation end-products (AGEs). Formation 10(3):424

    CAS  Google Scholar 

  40. Bursa K et al (2021) Valorization of hazelnut cake in compound chocolate: the effect of formulation on rheological and physical properties. LWT 139:110609

    Article  CAS  Google Scholar 

  41. Sen D, Kahveci D (2020) Production of a protein concentrate from hazelnut meal obtained as a hazelnut oil industry by-product and its application in a functional beverage. Waste Biomass Valoriz 11(10):5099–5107

    Article  CAS  Google Scholar 

  42. Esposito T et al (2020) Valorisation of chestnut spiny burs and roasted hazelnut skins extracts as bioactive additives for packaging films. Ind Crop Prod 151:112491

    Article  CAS  Google Scholar 

  43. Flinterman AE et al (2008) Hazelnut allergy: from pollen-associated mild allergy to severe anaphylactic reactions. Curr Opin Allergy Clin Immunol 8(3):261–265

    Article  CAS  PubMed  Google Scholar 

  44. Flinterman AE et al (2008) Lipid transfer protein–linked hazelnut allergy in children from a non-Mediterranean birch-endemic area. J Allergy Clin Immunol 121(2):423–428

    Article  CAS  PubMed  Google Scholar 

  45. Ortolani C et al (2000) Hazelnut allergy: a double-blind, placebo-controlled food challenge multicenter study. J Allergy Clin Immunol 105(3):577–581

    Article  CAS  PubMed  Google Scholar 

  46. Vieths S et al (1999) Digestibility of peanut and hazelnut allergens investigated by a simple in vitro procedure. Eur Food Res Technol 209(6):379–388

    Article  CAS  Google Scholar 

  47. Dullius A, Goettert MI, de Souza CFV (2018) Whey protein hydrolysates as a source of bioactive peptides for functional foods–biotechnological facilitation of industrial scale-up. J Funct Foods 42:58–74

    Article  CAS  Google Scholar 

  48. Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29(3):272–277

    Article  CAS  PubMed  Google Scholar 

  49. Hidalgo FJ, Zamora R (2006) Peptides and proteins in edible oils: stability, allergenicity, and new processing trends. Trends Food Sci Technol 17(2):56–63

    Article  CAS  Google Scholar 

  50. Masthoff LJ et al (2013) A systematic review of the effect of thermal processing on the allergenicity of tree nuts. Allergy 68(8):983–993

    Article  CAS  PubMed  Google Scholar 

  51. Vanga SK, Raghavan V (2017) Processing effects on tree nut allergens: a review. Crit Rev Food Sci Nutr 57(17):3794–3806

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Khalifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nawaz, A., Khalifa, I. (2022). Bioactive Phytochemicals from Hazelnut (Corylus) Oil-Processing By-Products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics