Skip to main content

Response of Solanaceous Vegetables to Increasing Temperature and Atmospheric CO2

  • Chapter
  • First Online:
Advances in Research on Vegetable Production Under a Changing Climate Vol. 1

Abstract

Agricultural production is highly influenced by the weather unpredictability which is gradually becoming severe due to the changing global climate system. In general, vegetable crops are highly sensitive to climatic extremes like high and low temperatures, moisture stress, salinity stress, etc. The elevated atmospheric CO2 levels have also disturbed the normal growth and development of crop plants. The important members of the Solanaceae family, consisting of a prime group of vegetables, are greatly affected by these environmental vagaries leading to lower productivity and poor quality. The responsiveness of various plants as a whole and Solanaceous vegetable crops (tomato, potato, pepper, and eggplant) in particular towards the elevating temperature and CO2 has been thoroughly discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abak K, Dasgan HY, Ikiz Ö, Uygun N, Sayalan M, Kaftanoglu O, Yeninar H (1996) Pollen production and quality of pepper grown in unheated greenhouses during winter and the effects of bumblebees (Bombus terrestris) pollination on fruit yield and quality. VII International Symposium on Pollination, Cape Town, pp 303–308

    Google Scholar 

  • Abdalla AA, Verkerk K (1968) Growth, flowering and fruit-set of the tomato at high temperature. Neth J Agric Sci 16:71–76

    Google Scholar 

  • Abdelmageed AH, Gruda N, Geyer B (2003) Effect of high temperature and heat shock on tomato (Lycopersicon esculentum Mill.) genotypes under controlled conditions. Conference on International Agricultural Research for Development, Montpellier, pp 1064–1076

    Google Scholar 

  • Abrol YP, Ingram KT (1996) Effects of higher day and night temperatures on growth and yields of some crop plants. In: Global climate change and agricultural production: direct and indirect effects of changing hydrological, pedological and plant physiological processes. FAO, Rome, pp 123–140

    Google Scholar 

  • Adams SR, Valdés VM (2002) The effect of periods of high temperature and manipulating fruit load on the pattern of tomato yields. J Hortic Sci Biotechnol 77:461–466

    Article  Google Scholar 

  • Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Article  Google Scholar 

  • Aguilera C, Murcia D, Ruiz A (2000) Effects of carbon dioxide enriched irrigation on yield of eggplant (Solanum melongena) production under greenhouse conditions. In: V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Sustainable Technologies, pp 223–228

    Google Scholar 

  • Ahrens MJ, Ingram DL (1988) Heat tolerance of citrus leaves. HortScience 23:747–748

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Akilli M, Özmerzi A, Ercan N (2000) Effect of CO2 enrichment on yield of some vegetables grown in greenhouses. In: International conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium, pp 231–234

    Google Scholar 

  • Aloni B, Peet M, Pharr M, Karni L (2001) The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol Plant 112:505–512

    Article  CAS  PubMed  Google Scholar 

  • Alonso FJ, Lorenzo P, Medrano E, Sánchez-Guerrero MC (2010) Greenhouse sweet pepper productive response to carbon dioxide enrichment and crop pruning. In: XXVIII International Horticultural Congress on Science and Horticulture for People, pp 345–351

    Google Scholar 

  • Araki T, Kitano M, Equchi H (2000) Dynamics of fruit growth and photoassimilation translocation in tomato plant under controlled environment. Acta Hortic 534:85–92

    Article  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50:1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Benoit LF, Skelly JM, Moore LD, Dochinger LS (1983) The influence of ozone on Pinus strobus L. pollen germination. Can J For Res 1. https://doi.org/10.1139/x83-025

  • Bindi M, Hacour A, Vandermeiren K, Craigon J, Ojanperä K, Selldén G, Hogy P, Fibbi L (2002) Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations. Eur J Agron 17:319–335

    Article  CAS  Google Scholar 

  • Biswas MK, De BK, Nath PS, Mohasin M (2004) Influence of different weather factors on the population of vectors of potato virus. Ann Plant Protect Sci 12:352–355

    Google Scholar 

  • Cemek B (2002) Effects of different covering materials on growth, development and yield of crop and environmental conditions inside greenhouses. Unpublished Ph.D. Thesis, Ondokuz Mayis University, Samsum, Turkey

    Google Scholar 

  • Cemek B, Demir Y, Uzun S (2005) Effects of greenhouse covers on growth and yield of aubergine. Eur J Hortic Sci 70:16–22

    Google Scholar 

  • Chen CT, Setter TL (2003) Response of potato tuber cell division and growth to shade and elevated CO2. Ann Bot 91:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BN, Canto T, Tenllado F, San Choi K, Joa JH, Ahn JJ, Kim CH, Do KS (2006) The effects of high temperature on infection by potato virus Y, potato virus A, and potato leaf roll virus. Plant Pathol J 32:321–328

    Article  Google Scholar 

  • Collins WB (1976) Effect of carbon dioxide enrichment on growth of the potato plant. HortScience 11:467

    Article  CAS  Google Scholar 

  • Cook J, Oreskes N, Doran PT, Anderegg WR, Verheggen B, Maibach EW, Carlton JS, Lewandowsky S, Skuce AG, Green SA, Nuccitelli D (2016) Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett 11:048002

    Article  Google Scholar 

  • Craigon J, Fangmeier A, Jones M, Donnelly A, Bindi M, De Temmerman L, Persson K, Ojanpera K (2002) Growth and marketable-yield responses of potato to increased CO2 and ozone. Eur J Agron 17:273–289

    Article  CAS  Google Scholar 

  • Dalal KB, Salunkhe DK, Olson LE, Do JY, Yu MH (1968) Volatile components of developing tomato fruit grown under field and greenhouse conditions. Plant Cell Physiol 9:389–400

    CAS  Google Scholar 

  • de Koning ANM (1988) The effect of different day/night temperature regimes on growth, development and yield of glasshouse tomatoes. J Horticult Sci 63:465–471

    Article  Google Scholar 

  • De Koning ANM (1989) The effect of temperature on fruit growth and fruit load of tomato. International symposium on models for plant growth, environmental control and farm management in protected cultivation. ISHS Acta Horticulturae 248. https://doi.org/10.17660/Actahortic.1989.248.40

  • de Koning ANM (1990) Long-term temperature integration of tomato. Growth and development under alternating temperature regimes. Sci Hortic 45:117–127

    Article  Google Scholar 

  • Deryng D, Elliott J, Folberth C, Müller C, Pugh TA, Boote KJ, Conway D, Ruane AC, Gerten D, Jones JW, Khabarov N (2016) Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat Clim Chang 6:786–793

    Article  Google Scholar 

  • Deuter P, White N, Putland D (2012) Critical temperature thresholds case study: tomato. Agriscience, Queensland

    Google Scholar 

  • Dias JAC, Yuki VA, Costa AS, Teixeira PRM (1980) Study of the spread of potato virus diseases in a warm climate as compared to a cold climate, with a view to obtaining seed potatoes with a low rate of virus diseases. Summa Phytopathol 6:24–59

    Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9:1–11

    Article  Google Scholar 

  • Donnelly A, Lawson T, Craigon J, Black CR, Colls JJ, Landon G (2001a) Effects of elevated CO2 and O3 on tuber quality in potato (Solanum tuberosum L.). Agric Ecosyst Environ 87:273–285

    Article  CAS  Google Scholar 

  • Donnelly A, Craigon J, Black CR, Colls JJ, Landon G (2001b) Elevated CO2 increases biomass and tuber yield in potato even at high ozone concentrations. New Phytol 149:265–274

    Article  PubMed  Google Scholar 

  • El Ahmadi AB, Stevens MA (1979) Reproductive responses of heat-tolerant tomatoes to high temperatures. J Am Soc Hortic Sci 104:686–691

    Article  Google Scholar 

  • Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ 25:123–130

    Article  Google Scholar 

  • Ewing EE (1981) Heat stress and the tuberization stimulus. Am J Potato Res 58:31–49

    Article  Google Scholar 

  • Ewing EE (1997) Potato. In: Wien HC (ed) The physiology of vegetable crops. CAB International, Wallingford, p 662

    Google Scholar 

  • Fahem M, Haverkort AJ (1988) Comparison of the growth of potato crops grown in autumn and spring in North Africa. Potato Res 31:557–568

    Article  Google Scholar 

  • Fangmeier A, De Temmerman L, Black C, Persson K, Vorne V (2002) Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur J Agron 17:353–368

    Article  CAS  Google Scholar 

  • Fierro A, Gosselin A, Tremblay N (1994) Supplemental carbon dioxide and light improved tomato and pepper seedling growth and yield. HortScience 29:152–154

    Article  Google Scholar 

  • Finnan JM, Donnelly A, Burke JI, Jones MB (2002) The effects of elevated concentrations of carbon dioxide and ozone on potato (Solanum tuberosum L.) yield. Agric Ecosyst Environ 88:11–22

    Article  CAS  Google Scholar 

  • Finnan JM, Donnelly A, Jones MB, Burke JI (2005) The effect of elevated levels of carbon dioxide on potato crops: a review. J Crop Improv 13:91–111

    Article  CAS  Google Scholar 

  • Firon N, Shaked R, Peet MM, Phari DM, Zamski E, Rosenfeld K, Althan L, Pressman NE (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217

    Article  CAS  Google Scholar 

  • Fleisher DH, Timlin DJ, Reddy VR (2006) Temperature influence on potato leaf and branch distribution and on canopy photosynthetic rate. Agron J 98:1442–1452

    Article  CAS  Google Scholar 

  • Fleisher DH, Timlin DJ, Reddy VR (2008) Interactive effects of CO2 and water stress on potato canopy growth and development. Agron J 100:711–719

    Google Scholar 

  • Fleisher DH, Condori B, Quiroz R, Alva A, Asseng S, Barreda C, Bindi M, Boote KJ, Ferrise R, Franke AC, Govindakrishnan PM (2017) A potato model intercomparison across varying climates and productivity levels. Glob Chang Biol 23:1258–1281

    Article  PubMed  Google Scholar 

  • Gatto M, Pradel W, Suarez V, Qin J, Hareau G, Bhardwaj V, Pandey SK (2016) In: Dataset for: modern potato varietal release information in selected countries in Southeast and South Asia. International Potato Center Dataverse, V1, https://doi.org/10.21223/P3/2UOG9I

  • Gatto M, Hareau G, Pradel W, Suarez V, Qin J (2018) Release and adoption of improved potato varieties in Southeast and South Asia, Social sciences working paper no. 2018-2. International Potato Center (CIP), Lima, pp 1–42

    Google Scholar 

  • Gautier H, Rocci A, Buret M, Grasselly D, Causse M (2005) Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J Sci Food Agric 85:1009–1016

    Article  CAS  Google Scholar 

  • Geigenberger P (2003) Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54:457–465

    Article  CAS  PubMed  Google Scholar 

  • Geisenberg C, Stewart K (1986) Field crop management. The tomato crop. Chapman & Hall, London, pp 511–557

    Book  Google Scholar 

  • Goudriaan J, De Ruiter HE (1983) Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. Neth J Agric Sci 31:157–169

    CAS  Google Scholar 

  • Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ 37:439–450

    Article  CAS  PubMed  Google Scholar 

  • Hann YH, Hernandez TP (1982) Response of six tomato genotypes under the summer and spring weather conditions in Louisiana. HortScience 17:758–759

    Article  Google Scholar 

  • Hanying W, Shenyan S, Zhujun Z, Xinting Y (2001) Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum frutescens L.). Acta Horticult Sinica 28:517–521

    Google Scholar 

  • Haque MA, Hossain AKMA, Ahmed KU (1999) A comparative study on the performance of different varieties of tomato. II. Varietal response of different seasons and temperature in respect of yield and yield components. Bangl Horticult 26:39–45

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hazra P, Samsul HA, Sikder D, Peter KV (2007) Breeding tomato (Lycopersicon esculentum Mill.) resistant to high temperature stress. Int J Plant Breed 1:31–40

    Google Scholar 

  • Heagle AS, Miller JE, Pursley WA (2003) Growth and yield responses of potato to mixtures of carbon dioxide and ozone. J Environ Qual 32:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Helyes L, Lugasi A, Neményi A, Pék Z (2012) The simultaneous effect of elevated CO2-level and nitrogen-supply on the fruit components of tomato. Acta Aliment 41:265–271

    Article  CAS  Google Scholar 

  • Heuvelink E (1995) Effect of temperature on biomass allocation in tomato (Lycopersicon esculentum). Physiol Plant 94:447–452

    Article  CAS  Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279

    Article  Google Scholar 

  • Högy P, Fangmeier A (2009) Atmospheric CO2 enrichment affects potatoes: 2. Tuber quality traits. Eur J Agron 30:85–94

    Article  CAS  Google Scholar 

  • Hurd RG, Graves CJ (1984) The influence of different temperature patterns having the same integral on the earliness and yield of tomatoes. Acta Hortic 148:547–554

    Article  Google Scholar 

  • Hurd RG, Graves CJ (1985) Some effects of air and root temperatures on the yield and quality of glasshouse tomatoes. J Horticult Sci 60:359–371

    Article  Google Scholar 

  • IPCC (2007) Impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2014) Synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Geneva: contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Islam MS, Matsui T, Yoshida Y (1996) Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic 65:137–149

    Article  CAS  Google Scholar 

  • Iwahori S, Takahashi K (1964) High temperature injuries in tomato. III. Effects of high temperature on flower buds and flowers of different stages of development. J Jpn Soc Horticult Sci 33:67–74

    Article  Google Scholar 

  • Khan I, Azam A, Mahmood A (2013) The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin c contents of tomato (Lycopersicon esculentum). Environ Monit Assess 185:205–214

    Article  CAS  PubMed  Google Scholar 

  • Kim YU, Seo BS, Choi DH, Ban HY, Lee BW (2017) Impact of high temperatures on the marketable tuber yield and related traits of potato. Eur J Agron 89:46–52

    Article  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Kimball BA (2011) Handbook of climate change and agroecosystems, impacts, adaptation, and mitigation, vol 1. Indian Agricultural Research Institute, New Delhi, pp 87–107

    Book  Google Scholar 

  • Kirk WW, Marshall B (1992) The influence of temperature on leaf development and growth in potatoes in controlled environments. Ann Appl Biol 120:511–525

    Article  Google Scholar 

  • Kooman PL, Haverkort AJ (1995) Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In: Potato ecology and modelling of crops under conditions limiting growth. Springer, Dordrecht, pp 41–59

    Chapter  Google Scholar 

  • Kooman PL, Fahem M, Tegera P, Haverkort AJ (1996) Effects of climate on different potato genotypes 2. Dry matter allocation and duration of the growth cycle. Eur J Agron 5:207–217

    Article  Google Scholar 

  • Krauss A, Marschner H (1984) Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Res 27:297–303

    Article  CAS  Google Scholar 

  • Krumbein A, Schwarz D, Kläring HP (2012) Effects of environmental factors on carotenoid content in tomato (Lycopersicon esculentum (L.) Mill.) grown in a greenhouse. J Appl Bot Food Qual 80:160–164

    Google Scholar 

  • Kumar R, Kumar R, Singh RK, Rai VP, Singh M, Singh PK (2017) Selection of tomato (Solanum lycopersicum) genotypes for heat stress and analyzing stability in their physio-morphological traits under different seasons. Curr Horticult 5(1):30–39

    Google Scholar 

  • Kumari S, Agrawal M (2014) Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv. Kufri Chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions. Ecotoxicol Environ Saf 101:146–156

    Article  CAS  PubMed  Google Scholar 

  • Kuo CG, Chen BW, Chou MH, Tsai CL, Tsay TS (1979) Tomato fruit-set at high temperatures. In: First international symposium on tropical tomato. Asian Vegetable Research Development Centre, Shanhua, pp 94–109

    Google Scholar 

  • Lawson T, Craigon J, Tulloch AM, Black CR, Colls JJ, Landon G (2001) Photosynthetic responses to elevated CO2 and O3 in field-grown potato (Solanum tuberosum). J Plant Physiol 158:309–323

    Article  CAS  Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity: a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Levy A, Rabinowitch HD, Kedar N (1978) Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica 27:211–218

    Article  Google Scholar 

  • Li JH, Sagi M, Gale J, Volokita M, Novoplansky A (1999) Response of tomato plants to saline water as affected by carbon dioxide supplementation. I. Growth, yield and fruit quality. J Hortic Sci Biotechnol 74:232–237

    Article  Google Scholar 

  • Lurie S, Handros A, Fallik E, Shapira R (1996) Reversible inhibition of tomato fruit gene expression at high temperature (Effects on tomato fruit ripening). Plant Physiol 110:1207–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamatha H, Rao NS, Laxman RH, Shivashankara KS, Bhatt RM, Pavithra KC (2014) Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52:519–528

    Article  CAS  Google Scholar 

  • Manrique LA (1990) Growth and yield of potato grown in the greenhouse during summer and winter in Hawaii. Commun Soil Sci Plant Anal 21:237–249

    Article  Google Scholar 

  • McGee E, Jarvis MC, Duncan HJ (1986) The relationship between temperature and sprout growth in stored seed potatoes. Potato Res 29:521–524

    Article  Google Scholar 

  • Menzel CM (1985) Tuberization in potato at high temperatures: interaction between temperature and irradiance. Ann Bot 55:35–39

    Article  CAS  Google Scholar 

  • Midmore DJ (1984) Potato (Solanum spp.) in the hot tropics I. Soil temperature effects on emergence, plant development and yield. Field Crop Res 8:255–271

    Article  Google Scholar 

  • Midmore DJ, Prange RK (1991) Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum species. Euphytica 55(3):235–245

    Article  Google Scholar 

  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peressotti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Glob Chang Biol 4:163–172

    Article  Google Scholar 

  • Mitcham EJ, McDonald RE (1992) Effect of high temperature on cell wall modifications associated with tomato fruit ripening. Postharvest Biol Technol 1:257–264

    Article  CAS  Google Scholar 

  • Moreno U (1985) Environmental effects on growth and development of potato plants. In: Potato physiology. Academic Press Inc, London, pp 481–501

    Google Scholar 

  • Mulholland BJ, Edmondson RN, Fussell M, Basham J, Ho LC (2003) Effects of high temperature on tomato summer fruit quality. J Hortic Sci Biotechnol 78:365–374

    Article  Google Scholar 

  • Nederhoff EM (1994) Effects of CO2 concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops. Dissertation. Agricultural University, Wageningen

    Google Scholar 

  • Nilsen S, Hovland K, Dons C, Sletten SP (1983) Effect of CO2 enrichment on photosynthesis, growth and yield of tomato. Sci Hortic 20:1–14

    Article  CAS  Google Scholar 

  • Nothmann J, Rylski I, Spigelman M (1979) Flowering-pattern, fruit growth and color development of eggplant during the cool season in a subtropical climate. Sci Hortic 11:217–222

    Article  Google Scholar 

  • Olivo N, Martinez CA, Oliva MA (2002) The photosynthetic response to elevated CO2 in high altitude potato species (Solanum curtilobum). Photosynthetica 40:309–313

    Article  CAS  Google Scholar 

  • Olmstead RG, Bohs L (2006) A summary of molecular systematic research in Solanaceae: 1982–2006. In: VI International Solanaceae Conference: Genomics Meets Biodiversity, pp. 255–268

    Google Scholar 

  • Passam HC, Bolmatis A (1997) The influence of style length on the fruit set, fruit size and seed content of aubergines cultivated under high ambient temperature. Trop Sci 37:221–227

    Google Scholar 

  • Pearce BD, Grange RI, Hardwick K (1993) The growth of young tomato fruit. II. Environmental influences on glasshouse crops grown in rockwool or nutrient film. J Horticult Sci 68:13–23

    Article  Google Scholar 

  • Pearson S (1992) Modelling the effects of temperature on the growth and development of horticultural crops. Doctoral dissertation, University of Reading

    Google Scholar 

  • Peet MM, Wolfe DW (2000) Climate change and global productivity. Crop ecosystem responses to climate change: vegetable crops. CABI Publishing, New York/Wallingford, pp 213–243

    Google Scholar 

  • Peet MM, Willits DH, Gardner RG (1997) Responses of ovule development and post pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48:101–111

    Article  CAS  Google Scholar 

  • Peet MM, Sato S, Gardner RG (1998) Comparing heat stress effects on male fertile and male sterile tomatoes. Plant Cell Environ 21:225–231

    Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Trnka M, Olesen JE, Calanca P, Eckersten H, Eitzinger J, Gobin A, Kersebaum KC, Kozyra J, Kumar S (2010) Coincidence of variation in yield and climate in Europe. Agric Ecosyst Environ 139:483–489

    Article  Google Scholar 

  • Piñero MC, Otálora G, Porras ME, Sánchez-Guerrero MC, Lorenzo P, Medrano E, del Amor FM (2017) The form in which nitrogen is supplied affects the polyamines, amino acids, and mineral composition of sweet pepper fruit under an elevated CO2 concentration. J Agric Food Chem 65:711–717

    Article  PubMed  CAS  Google Scholar 

  • Polowick PL, Sawhney VK (1985) Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Sci Hortic 25:117–127

    Article  Google Scholar 

  • Porras ME, Lorenzo P, Medrano E, Sánchez-González MJ, Otálora-Alcón G, Piñero MC, del Amor FM, Sánchez-Guerrero MC (2017) Photosynthetic acclimation to elevated CO2 concentration in a sweet pepper (Capsicum annuum) crop under Mediterranean greenhouse conditions: influence of the nitrogen source and salinity. Funct Plant Biol 44:573–586

    Article  CAS  PubMed  Google Scholar 

  • Prendergast JD (1983) Carbon assimilation and partitioning in heat tolerant tomato genotypes. Dissert Abstract Int 43:2109B

    Google Scholar 

  • Randeni G, Caesar K (1986) Effect of soil temperature on the carbohydrate status in the potato plant (S. tuberosum L.). J Agron Crop Sci 56:217–224

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD, Pastore MA (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360:317–320

    Article  CAS  PubMed  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) Tomatoes, peppers, eggplants, and other solanaceous vegetables. World vegetables. Springer, Boston, pp 532–576

    Google Scholar 

  • Rudich J, Zamski E, Regev Y (1977) Genotype variation for sensitivity to high temperature in the tomato: pollination and fruit set. Bot Gaz 138:448–452

    Article  Google Scholar 

  • Rykaczewska K (2013) The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am J Plant Sci 4:2386–2393

    Article  Google Scholar 

  • Rykaczewska K (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res 92:339–349

    Article  CAS  Google Scholar 

  • Rylski I (1979a) Effect of temperatures and growth regulators on fruit malformation in tomato. Sci Hortic 10:27–35

    Article  CAS  Google Scholar 

  • Rylski I (1979b) Fruit set and development of seeded and seedless tomato fruits under diverse regimes of temperature and pollination. J Am Soc Hortic Sci 104:835–838

    Article  Google Scholar 

  • Rylski I, Spigelman M (1982) Effects of different diurnal temperature combinations on fruit set of sweet pepper. Sci Hortic 17:101–106

    Article  Google Scholar 

  • Sato S, Peet MM, Gardner RG (2001) Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci Hortic 90:243–254

    Article  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. Exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawhney VK, Polowick PL (1985) Fruit development in tomato: the role of temperature. Can J Bot 63:1031–1034

    Article  Google Scholar 

  • Schapendonk AH, van Oijen M, Dijkstra P, Pot CS, Jordi WJ, Stoopen GM (2000) Effects of elevated CO2 concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. Funct Plant Biol 27:1119–1130

    Article  Google Scholar 

  • Senioniti E, Manetos Y, Gavales NA (1986) Co-operative effects of light and temperature on the activity of phosphoenolpyruvate carboxylase from Amaranthus paniculatus. Plant Physiol 82:518–522

    Article  Google Scholar 

  • Sicher RC, Bunce JA (1999) Photosynthetic enhancement and conductance to water vapor of field-grown Solanum tuberosum (L.) in response to CO2 enrichment. Photosynth Res 62:155–163

    Article  CAS  Google Scholar 

  • Singer SF, Idso C (2009) Climate change reconsidered: the report of the Nongovernmental International Panel on Climate Change (NIPCC). The Heartland Institute, Chicago

    Google Scholar 

  • Singh JP, Lal SS, Pandey SK (2009) Effect of climate change on potato production in India. Central Potato Research Institute, Shimla, Newsl 40:17–18

    Google Scholar 

  • Singh A, Siddappa S, Bhardwaj V, Singh B, Kumar D, Singh BP (2015) Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem 97:108–116

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald S, van Harsselaar J, Ott K, Lorenz J, Sonnewald U (2015) How potato plants take the heat? Procedia Environ Sci 29:97

    Article  CAS  Google Scholar 

  • Struik PC (2007) Responses of the potato plant to temperature. In: Potato biology and biotechnology. Elsevier Science BV, Amsterdam, pp 367–393

    Chapter  Google Scholar 

  • Sun W, Wang D, Wu Z, Zhi J (1990) Seasonal change of fruit setting in eggplants (Solanum melongena L.) caused by different climatic conditions. Sci Horic 44:55–59

    Article  Google Scholar 

  • Usman IS, Mamat AS, Mohd HSZS, Aishah HS, Anuar AR (1999) The non-impairment of pollination and fertilization in the abscission of chilli (Capsicum annuum L. var. Kulai) flowers under high temperature and humid conditions. Sci Hortic 79:1–11

    Article  Google Scholar 

  • Uzun S (1996) The quantitative effects of temperature and light environment on the growth, development and yield of tomato and aubergine. Unpublished PhD Thesis, The University of Reading, England, pp 45–48

    Google Scholar 

  • Vafiadis DT, Papamanthos C, Ntinas GK, Nikita-Martzopoulou C (2012) Influence of CO2 enrichment in greenhouses on pepper plant (Capsicum annuum L.) yield under high temperature conditions. Acta Hortic 952:749–754

    Article  Google Scholar 

  • Van De Geijn SC, Dijkstra P (1995) Physiological effects of changes in atmospheric carbon dioxide concentration and temperature on growth and water relations of crop plants. In: Potato ecology and modelling of crops under conditions limiting growth. Springer, Dordrecht, pp 89–99

    Chapter  Google Scholar 

  • Van de Geijn SC, Goudriaan J (1996) The effects of elevated CO2 and temperature change on transpiration and crop water use. In: Global climate change and agricultural production. FAO/John Wiley & Sons, New York, pp 101–122

    Google Scholar 

  • Vander Zaag P, Demagante AL (1987) Potato (Solanum spp.) in an isohyperthermic environment. I. Agronomic management. Field Crop Res 17:199–217

    Article  Google Scholar 

  • Vandermeiren K, Black C, Lawson T, Casanova MA, Ojanperä K (2002) Photosynthetic and stomatal responses of potatoes grown under elevated CO2 and/or O3− results from the European CHIP-programme. Eur J Agron 17:337–352

    Article  CAS  Google Scholar 

  • Wang K, Zhang X, Goatley M, Ervin E (2014) Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One 9:e102914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warrington IJ, Fulton, TA, Halligan EA, deSilva HN (1999) Apple fruit growth and maturity are affected by early season temperatures. J Am Soc Hortic Sci 124:468–477

    Google Scholar 

  • Wei Z, Du T, Li X, Fang L, Liu F (2018) Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes. Front Plant Sci 9:1–10

    Article  Google Scholar 

  • Wheeler RM, Tibbitts TW, Fitzpatrick AH (1991) Carbon dioxide effects on potato growth under different photoperiods and irradiance. Crop Sci 31:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Winsor GW, Davies JN, Massey DM (1962) Composition of tomato fruit. IV. Changes in some constituents of the fruit walls during ripening. J Sci Food Agric 13:141–145

    Article  CAS  Google Scholar 

  • Wolf S, Olesinski AA, Rudich J, Marani A (1990) Effect of high temperature on photosynthesis in potatoes. Ann Bot 65:179–185

    Article  Google Scholar 

  • Wolf S, Marani A, Rudich J (1991) Effect of temperature on carbohydrate metabolism in potato plants. J Exp Bot 42:619–625

    Article  CAS  Google Scholar 

  • Wolfe DW, Erickson JD (1993) Carbon dioxide effects on plants: uncertainties and implications. In: Agricultural dimensions of global climate change. IPCC, Geneva, pp 153–178

    Google Scholar 

  • Zhang Z, Liu L, Zhang M, Zhang Y, Wang Q (2014) Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse. Food Chem 153:157–163

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N (2016) Greening of the Earth and its drivers. Nat Clim Chang 6:791–795

    Article  CAS  Google Scholar 

  • Ziska LH (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. DNA Cell Biol 27:165–172

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moharana, D.P., Singh, R.K., Kashyap, S.P., Rai, N., Bhardwaj, D.R., Singh, A.K. (2021). Response of Solanaceous Vegetables to Increasing Temperature and Atmospheric CO2. In: Solankey, S.S., Kumari, M., Kumar, M. (eds) Advances in Research on Vegetable Production Under a Changing Climate Vol. 1. Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-030-63497-1_4

Download citation

Publish with us

Policies and ethics