Skip to main content
Log in

Heat stress and the tuberization stimulus

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

Heat stress may lower potato tuber yields through reduction in the net amount of photosynthate available for total plant growth and through reduced partitioning to the tubers. The latter effect is generally more serious and is the main subject of this paper. High temperatures have much the same effect on partitioning as do long days, and there are significant genetic differences in response to both factors. Both affect the total morphology of the plant. A cutting technique may be used to rapidly screen seedling populations for reaction to temperature or photoperiod. Although progress has been made in studying the nature of the hypothetical “tuberization stimulus”, more needs to be done to clarify the physiological and biochemical changes involved during tuber induction.

Resumen

El stress térmico puede disminuir el rendimiento de los tubérculos de la papa, reduciendo la cantidad neta de material fotosintetizado disponible para el total desarrollo de la planta y reduciendo su distribución a los tubérculos.

Este último efecto es generalmente más serio y es el principal motivo de este artículo. Altas temperaturas y días largos tìenen efectos semejantes sobre la distribución del material elaborado, existiendo además significativas diferencias genéticas en relación con la respuesta a ambos factores. Ambos factores afectan la morfología total de la planta. El método de propagación vegetativa con secciones del tallo, puede usarse para analizar la respuesta de poblaciones de plántulas a la temperatura o al fotoperíodo. Aun cuando se ha progresado en el estudio de la naturaleza del estímulo hipotético de la tuberización, se necesita todavia clarificar los cambios fisiológicos y bioquímicos que ocurren durante la indución de la tuberización.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Arteca, R.N., B.W. Poovaiah and O.E. Smith. 1979. Changes in carbon fixation, tuberization, and growth induced by CO2 applications to the root zone of potato plants. Science 205:1279–1280.

    Article  PubMed  CAS  Google Scholar 

  2. Bodlaender, K.B.A. 1963. Influence of temperature, radiation and photoperiod on development and yield. In. The Growth of the Potato, p. 199–210. Ed. J.D. Ivins and E.L. Milthorpe. Butterworths, London.

    Google Scholar 

  3. Bodlaender, K.B.A., C. Lugt and J. Marinus. 1964. The induction of second-growth in potato tubers. Eur Potato J 7:57–71.

    Article  Google Scholar 

  4. Borah, M.N. and F.L. Milthorpe. 1962. Growth of the potato as influenced by temperature. Indian J Plant Physiol 5:53–72.

    Google Scholar 

  5. Burton, W.G. 1972. The response of the potato plant and tuber to temperature. In. Crop Processes in Controlled Environments. Proceedings of an International Symposium, Glasshouse Crops Research Institute, Littlehampton. p. 217–233. Ed. A.R. Rees, K.E. Cockshull, D.W. Hand and R.G. Hurd. Academic Press. London and New York.

    Google Scholar 

  6. Bushnell, J. 1925. The relation of temperature to growth and respiration in the potato plant. Minn Agric Exp Stn Tech Bull 34. 29 pp.

  7. Chapman, H.W. 1958. Tuberization in the potato plant. Physiol Plant 11:215–224.

    Article  Google Scholar 

  8. Cubillos, A.G. and R.L. Plaisted. 1976. Heterosis for yield in hybrids betweenS. tuberosum ssp.tuberosum andtuberosum ssp.andigena. Am Potato J 53:143–150.

    Article  Google Scholar 

  9. Dodds, K.S. and J.G. Hawkes. 1952. Potatoes in the tropics. Rep XIII Int Hort Cong 2: 1132–1137.

    Google Scholar 

  10. Driver, C.M. and J.G. Hawkes. 1943. Photoperiodism in the potato. Imp Bur Plant Breed and Genet, Cambridge, England. Tech Comm. 36 pp.

  11. El-Antably, H.M.M., P.F. Wareing and J. Hillman. 1967. Some physiological responses to d, 1 abscisin (dormin). Planta 73:74–90.

    Article  CAS  Google Scholar 

  12. Ewing, E.E. 1978. Critical photoperiod for tuberization: a screening technique with potato cuttings. Am Potato J 55:43–53.

    Article  Google Scholar 

  13. Ewing, E.E., M.B. Lazin, E.T. Rasco and R.L. Plaisted. 1978. Screening for ability to tuberize under long photoperiod or high temperature: A technique employing stem cuttings. (Abs.) Seventh Triennial Conf, Eur Assoc for Potato Res, Warsaw. Abstracts of Conference Papers, p. 49–50.

    Google Scholar 

  14. Ewing, E.E. and P.F. Wareing. 1978. Shoot, stolon, and tuber formation on potato (Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiol 61:348–353.

    PubMed  Google Scholar 

  15. Forsline, P.L. and A.R. Langille. 1975. Endogenous cytokinins inSolanum tuberosum as influenced by photoperiod and temperature. Physiol Plant 34:75–77.

    Article  CAS  Google Scholar 

  16. Gooding, E.G.B. 1966. Climatic factors and potato growth. Exp Agric 2:129–137.

    Google Scholar 

  17. Gray, D. 1973. The growth of individual tubers. Potato Res 16:80–84.

    Article  Google Scholar 

  18. Gregory, L.E. 1956. Some factors for tuberization in the potato plant. Am J Bot 43:281–288.

    Article  CAS  Google Scholar 

  19. Gregory, L.E. 1965. Physiology of tuberization in plants. (Tubers and tuberous roots.) Encyclopedia Plant Physiol 15:1328–1354.

    Google Scholar 

  20. Hackbarth, J. 1935. Versuche über Photoperiodismus bei südamerikanischen Kartoffelklonen. Züchter 7:95–104.

    Google Scholar 

  21. Hackett, C., P.J. Sands and H.A. Nix. 1979. A model of the development and bulking of potatoes (Solanum tuberosum L.). II. Prediction of district commercial yields. Field Crops Research 2:333–347.

    Article  Google Scholar 

  22. Hammes, P.S. and P.C. Nel. 1975. Control mechanisms in the tuberization process. Potato Res 18:262–272.

    Article  CAS  Google Scholar 

  23. Harmey, M.A., M.P. Crowley and P.E.M. Clinch. 1966. The effect of growth regulators on tuberization of cultured stem pieces ofSolanum tuberosum. Eur Potato J 9:146–151.

    Article  CAS  Google Scholar 

  24. Hartz, T.K. and F.D. Moore III. 1978. Prediction of potato yield using temperature and insolation data. Am Potato J 55:431–436.

    Article  Google Scholar 

  25. Iritani, W.M. 1963. The effect of summer temperatures in Idaho on yield of Russet Burbank potatoes. Am Potato J 40:47–52.

    Google Scholar 

  26. Kopetz, L.M. and O. Steineck. 1954. Photoperiodische Untersuchungen an Kartoffelsämlingen. Züchter 24:69–77.

    Article  Google Scholar 

  27. Krauss, A. 1978. Tuberization and abscisic acid content inSolanum tuberosum as affected by nitrogen nutrition. Potato Res 21:183–193.

    Article  CAS  Google Scholar 

  28. Krauss, A. and H. Marschner. 1971. Einfluss der Stickstoffernährung der Kartoffeln auf Induktion und Wachstumsrate der Knolle. Z Pflanzenern Bodenk 128:153–168.

    Article  CAS  Google Scholar 

  29. Krauss, A. and H. Marschner. 1976. Einfluss von Stickstoffernährung und Wucksstoffapplikation auf die Knolleninduktion bei Kartoffelpflanzen. Z Pflanzenern Bodenk 139:143–155.

    Article  Google Scholar 

  30. Krug, H. 1960. Zum photoperiodischen Verhalten einiger Kartoffelsorten. I, II. Eur Potato J 3:47–49, 107–136.

    Article  Google Scholar 

  31. Ku, S.B. and G.E. Edwards. 1976. Effects of light, CO2 and temperature on photosynthetic characteristics in potato, a high yielding C3 crop. (Abs.) Ann Meeting Am Soc Plant Physiologists. Plant Physiol 57:105.

    Google Scholar 

  32. Kumar, D. and P.F. Wareing. 1973. Studies on tuberization inSolanum andigena. I. Evidence for the existence and movement of a specific tuberization stimulus. New Phytol 72:283–287.

    Article  Google Scholar 

  33. Kumar, D. and P.F. Wareing. 1974. Studies on tuberization ofSolanum andigena. II. Growth hormones and tuberization. New Phytol 73:833–840.

    Article  CAS  Google Scholar 

  34. Lazin, M.B. 1980. Screening for heat tolerance and critical photoperiod in the potato (Solanum tuberosum L.). PhD Thesis, Cornell Univ 273 p.

  35. Lazin, M.B., E.E. Ewing and H.A. Mendoza. 1979. Progress in screening for heat tolerance through the use of potato stem cuttings. (Abs.) Am Potato J 56:471.

    Google Scholar 

  36. Madec, P. 1966. Croissance et tubérisation chez la pomme de terre. Bull Soc Franç Physiol Végét 12:159–173.

    Google Scholar 

  37. Madec, P. and P. Perennec. 1962. Les relations entre l’induction de la tubérisation et la croissance chez la plante de Pomme de terre (Solanum tuberosum L.). Ann Physiol Veg 4:5–84.

    Google Scholar 

  38. Marinus, J. and K.B.A. Bodlaender. 1975. Responses of some potato varieties to temperature. Potato Res 18:189–204.

    Article  Google Scholar 

  39. Mauk, C.S. and A.R. Langille. 1978. Physiology of tuberization inSolanum tuberosum L. Cis-zeatin riboside in the potato plant: its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiol 62:438–442.

    PubMed  CAS  Google Scholar 

  40. Meisinger, J.J. 1976. Improving the efficiency of fertilizer nitrogen use for potatoes. PhD Thesis, Cornell Univ 236 p.

  41. Mendoza, H.A. 1976. Adaptation of cultivated potatoes to the lowland tropics. In. Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops. p. 50–53. Ed. J. Cock, R. MacIntyre and M. Graham. CIAT: Cali, Columbia.

    Google Scholar 

  42. Mingo-Castel, A.M., F.B. Negm and O.E. Smith. 1974. Effects of carbon dioxide and ethylene on tuberization of isolated potato stolons culturedin vitro. Plant Physiol 53:789–801.

    Google Scholar 

  43. Mingo-Castel, A.M., O.E. Smith and J. Kumamoto. 1976. Studies on the carbon dioxide promotion and ethylene inhibition of tuberization in potato expiants culturedin vitro. Plant Physiol 57:480–485.

    Article  PubMed  CAS  Google Scholar 

  44. Moreno, U. 1970. Physiological investigations on the potato plant with special reference to the effects of different environments. PhD Thesis, Cornell Univ 317 p.

  45. Okazawa, Y. 1959. Studies on the occurrence of natural gibberellin and its effects on the tuber formation of potato plants. Proc Crop Sci Soc Japan 28:129–133.

    CAS  Google Scholar 

  46. Okazawa, Y. 1960. Studies on the relation between the tuber formation of potato plant and its natural gibberellin content. Proc Crop Sci Soc Japan 29:121–124.

    Google Scholar 

  47. Okazawa, Y. 1970. Physiological significance of endogenous cytokinin occurred in potato tubers during their developmental period. Proc Crop Sci Soc Japan 39:171–176.

    CAS  Google Scholar 

  48. Okazawa, Y. and H.W. Chapman. 1962. Regulation of tuber formation in the potato plant. Physiol Plant 15:413–419.

    Article  CAS  Google Scholar 

  49. Palmer, C.E. and O.E. Smith. 1969. Cytokinins and tuber initiation in the potatoSolanum tuberosum. Nature 221:279–280.

    Article  CAS  Google Scholar 

  50. Palmer, C.E. and O.E. Smith. 1970. Effect of kinetin on tuber formation on isolated stolons ofSolanum tuberosum L. culturedin vitro. Plant Cell Physiol 11:303–314.

    CAS  Google Scholar 

  51. Paupardin, C. and R. Tizio. 1969a. Action de quelques composés phénoliques sur la tubérisation de germes de Pomme de terre cultivés in vitro. C R Acad Sci, Ser D 269:1077–1080.

    CAS  Google Scholar 

  52. Paupardin, C. and R. Tizio. 1969b. Sur la présence de composés phénoliques dans des germes de Pomme de terre cultivés in vitro: comparaison avec les composés phénoliques de la plante entière. C R Acad Sci, Ser D 269:1668–1670.

    CAS  Google Scholar 

  53. Paupardin, C. and R. Tizio. 1970. Action de quelques composés phénoliques sur la tubérisation de la Pomme de terre. Potato Research 13:187–198.

    Article  CAS  Google Scholar 

  54. Perennec, P. 1966. Induction de la tubérisation et inhibition des bourgeons chez la pomme de terre (Solanum tuberosum L.). Bull Soc Franç Physiol Végét 12:175–192.

    Google Scholar 

  55. Petri, P.S. 1963. L’influence de la temperature sur la morphologie de la pomme de terre. Eur Potato J 6:242–257.

    Article  Google Scholar 

  56. Pont-Lezica, R.F. 1970. Evolution des substances de type gibbérellines chez la pomme de terre pendant la tubérisation, en relatión avec la longueur du jour et la température. Potato Res 13:323–331.

    Article  CAS  Google Scholar 

  57. Purohit, A.N. 1970. Photoperiod control of synthesis of substances influencing tuber and root formation in the potato. Potato Res 13:139–141.

    Article  Google Scholar 

  58. Racca, R.W. and R. Tizio. 1968. A preliminary study of changes in the content of gibberellin-like substances in the potato plant in relation to the tuberization mechanism. Eur Potato J 11:213–220.

    Article  CAS  Google Scholar 

  59. Railton, I.D. and P.F. Wareing. 1973. Effects of daylength on endogenous gibberellins in leaves ofSolanum andigena. I. Changes in levels of free acidic gibberellin-like substances. Physiol Plant 28:88–94.

    Article  CAS  Google Scholar 

  60. Rasco, E.T., Jr., R.L. Plaisted and E.E. Ewing. 1980. Photoperiod response and earliness ofS. tuberosum ssp.andigena after six cycles of recurrent selection for adaptation to long days. Am Potato J 57:435–447.

    Article  Google Scholar 

  61. Roca-Pizzini, W.M. 1972. The development of certain crop plants as affected by environments. PhD Thesis, Cornell Univ 331 p.

  62. Sale, P.M.J. 1974. Productivity of vegetable crops in a region of high solar input. III. Carbon balance of potato crops. Aust J Plant Physiol 1:283–296.

    Article  CAS  Google Scholar 

  63. Sands, P.J., C. Hackett and H.A. Nix. 1979. Model of the development and bulking of potatoes (Solanum tuberosum L.). I. Derivation from well-managed field crops. Field Crops Res 2:309–331.

    Article  Google Scholar 

  64. Simmonds, N.W. 1971. The potential of potatoes in the tropics. Trop Agric (Trinidad) 48: 291–299.

    Google Scholar 

  65. Slater, J.W. 1963. Mechanisms of tuber initiation, pp. 114–120. In. The Growth of the Potato. Ed. J.D. Ivins and F.L. Milthorpe. Butterworths, London.

    Google Scholar 

  66. Slater, J.W. 1968. The effect of night temperature on tuber initiation of the potato. Eur Potato J 11:14–22.

    Article  Google Scholar 

  67. Smith, O.E. and C.E. Palmer. 1970. Cytokinin-induced tuber formation on stolons ofSolanum tuberosum. Physiol Plant 23:599–606.

    Article  CAS  Google Scholar 

  68. Smith, O.E. and L. Rappaport. 1969. Gibberellins, inhibitors, and tuber formation in the potato,Solanum tuberosum. Am Potato J 46:185–191.

    CAS  Google Scholar 

  69. Stallknecht, G.F. 1972. Coumarin-induced tuber formation on excised shoots ofSolanum tuberosum L. culturedin vitro. Plant Physiol 50:412–413.

    PubMed  CAS  Google Scholar 

  70. Steineck, O. 1955. Untersuchungen über die photoperiodische Reaktion einiger Kartoffelsorten. Bodenkultur 8:254–262.

    Google Scholar 

  71. Steineck, O. 1956. Tageslänge und Knollenbildung bei Kultursorten der Kartoffel. Z Pflanzenzüchtung 36:198–213.

    Google Scholar 

  72. Tizio, R. 1969. Action du CCC (Chlorure de (2-chloroéthyl)-triméthylammonium) sur la tuberisation de la Pomme de terre. Eur Potato Jour 12:3–7.

    Article  CAS  Google Scholar 

  73. Tizio, R. 1971. Action et rôle probable de certaines gibbérelhnes (Al, A3, A4, A5, A7, A9 et A13) sur la croissance des stolons et la tubérisation de la Pomme de terre (Solanum tuberosum L.) Potato Res 14:193–204.

    Article  CAS  Google Scholar 

  74. van der Plank, J.E. 1947. Some climatic factors determining high yields of potatoes. II. The potato at low latitudes and high altitudes. Emp J Exp Agric 15:1–8.

    Google Scholar 

  75. Vöchting, H. 1887. Ueber die Bildung der Knollen. Bibliotheca Bot 4:1–55.

    Google Scholar 

  76. Went, F.W. 1957. The experimental control of plant growth. Chronica Bot 17:109–112.

    Google Scholar 

  77. Werner, H.O. 1934. The effect of a controlled nitrogen supply with different temperatures and photoperiods upon the development of the potato plant. Res Bull Nebraska Agric Exp Stn No. 75. 132 pp.

  78. Winkler, E. 1961. Assimilationsvermögen, Atmung und Erträge der Kartoffelsorten Oberanbacher Frühe, Planet, Lori und Agnes im Tal (610m) und an der Waldgrenze bei Innsbruck und Vent (1880m bzw. 2014m). Flora, Jena 151:621–662.

    Google Scholar 

  79. Winkler, E. 1971. Potato cultivation in Tyrol. II. Photosynthetic efficiency and respiration in different potato varieties. Potato Res 14:1–18.

    Article  CAS  Google Scholar 

  80. Wivutvongvana, M. 1979. Physiological response of heat tolerant and heat sensitive potatoes (Solanum species). PhD Thesis, Cornell Univ 121 p.

  81. Woolley, D. J. and P.F. Wareing. 1972. The interaction between growth promoters in apical dominance. I. Hormonal interaction, movement and metabolism of a cytokinin in rootless cuttings. New Phytol 71:781–793.

    Article  CAS  Google Scholar 

  82. Wurr, D.C.E. 1977. Some observations of patterns of tuber formation and growth in the potato. Potato Res 20:63–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper No. 775 of the Department of Vegetable Crops, Cornell University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, E.E. Heat stress and the tuberization stimulus. American Potato Journal 58, 31–49 (1981). https://doi.org/10.1007/BF02855378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02855378

Key Words

Navigation