Skip to main content

Genetic Engineering for Biotic Stress Management in Rice

  • Chapter
  • First Online:
Genome Engineering for Crop Improvement

Abstract

Rice yield is affected by various biotic stresses including fungi, bacteria, viruses, parasites, nematodes, weeds and insects, posing a major threat to global food security. Therefore, one of the major objectives of rice breeders is to develop rice cultivars resistant to biotic stresses and it has been achieved to large extent through traditional and molecular breeding approaches. However, frequent breakdown of resistance to these biotic stresses is a challenging issue and therefore, continuous efforts are needed to develop cultivars with durable resistance. Recently, genetic engineering technologies like transgenics and RNAi have enabled breeders to develop such durable resistance in rice against number of bacterial, fungal and viral diseases by utilizing the genes conferring resistance to trait and isolated from various organisms like plants, animals, microbes, etc. Genetic engineering is more preferred in some of the cases as it has advantages like requirement of lesser duration, no linkage drag and no crossing barrier compared to molecular breeding. Although varieties developed through genetic engineering require prior regulation before commercialization, it has the enormous potential to develop plants resistant/tolerant to biotic stresses. Present status of use of genetic engineering for developing biotic stress resistance in rice is briefly described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi N, Albar L, Pressoir G et al (2001) Genetic basis and mapping of the resistance to Rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103(6–7):1084–1092

    Google Scholar 

  • Ahmed MM, Bian S, Wang M et al (2017) RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic Res 26(2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Albar L, Bangratz-Reyser M, Hebrard E et al (2006) Mutations in the eIF (iso) 4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47(3):417–426

    Article  CAS  PubMed  Google Scholar 

  • Alfonso-Rubí J, Ortego F, Castañera P, et al (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil sitophilus oryzae. Transgenic Res 12:23–31

    Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5(1):53–63

    Google Scholar 

  • Bashir K, Husnain T, Fatima T, Riaz N, Makhdoom R, Riazuddin S (2005) Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Prot 24(10):870–879

    Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes ÉA, Aragão FJ (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20(6):717–726

    Google Scholar 

  • Bonman JM, KhusGS, Nalson RJ (1992) Breeding rice for resistant to pests. Ann Rev Phytopatholo 30:507–528

    Google Scholar 

  • Breitler JC, Vassal JM, Del Mar Catala M, Meynard D, Marfà V, Melé E, ... Messeguer J (2004) Bt rice harbouring cry genes controlled by a constitutive or wound‐inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2(5):417–430

    Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, ... Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12(11):2033–2045

    Google Scholar 

  • Cabauatan PQ, Cabunagan RC, Choi IR, Heong KL, Hardy B (2009) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. In: KL Heong, Hardy B (eds) IRRI, pp 357–368. Los Baños

    Google Scholar 

  • Chandrasekhar K, Vijayalakshmi M, Vani K, Kaul T, Reddy MK (2014) Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens. Biotechnol Lett 36(5):1059–1067. https://doi.org/10.1007/s10529-014-1459-8. Epub 2014 Feb 22. PMID: 24563293

  • Cheng X, Zhu L, He G (2013) Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant 6(3):621–634

    Article  CAS  PubMed  Google Scholar 

  • Chu Z, Yuan M, Yao J et al (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20(10):1250–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, et al (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180. https://doi.org/10.1023/A:1020380305904

  • Coutos‐Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst 1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12(2):215–228

    Google Scholar 

  • Datta K, Vasquez A, Tu J et al (1998) Constitutive and tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97(1–2):20–30

    Article  CAS  Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N et al (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100(6):832–839

    Article  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N et al (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Chandel G, Tu J, Baisakh N, Datta K (2003) Engineering of Bt transgenic rice for insect pest protection. J New Seeds 5(2–3):77–91

    Google Scholar 

  • Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81

    Google Scholar 

  • Devanna NB, Vijayan J, Sharma TR (2014) The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PloS One 9(8):e104840

    Google Scholar 

  • Dresselhaus T, Huckelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:267

    Google Scholar 

  • Duan X, Li X, Xue Q, Abo-EI-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnol 14(4):494–498

    Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M et al (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11(10):1151

    CAS  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, et al (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA et al (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA (b) gene. Mol Breed 3(5):401–414

    Article  CAS  Google Scholar 

  • Grennan AK (2008) Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146:1457–1458

    Google Scholar 

  • Gu K, Yang B, Tian D et al (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435(7045):1122

    Article  CAS  PubMed  Google Scholar 

  • Han S, Wu Z, Yang H et al (2000) Ribozyme-mediated resistance to rice dwarf virus and the transgene silencing in the progeny of transgenic rice plants. Transgenic Res 9(3):195–203

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Zhu Y, Itoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Nat Acad Sci 89(20):9865–9869

    Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annual Review of Phytopathol 39(1)285–312

    Google Scholar 

  • Hutin M, Sabot F, Ghesquiere A et al (2015) A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84(4):694–703

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H et al (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67(4):847–855

    Article  CAS  PubMed  Google Scholar 

  • Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17(12):1348–1354

    Article  CAS  PubMed  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436(7052):793

    Google Scholar 

  • IRRI (1989) IRRI toward 2000 and beyond

    Google Scholar 

  • ISAAA (2016) Global status of commercialized Biotech/GM crops: 2016. ISAAA Brief No. 52. ISAAA: Ithaca, NY

    Google Scholar 

  • Jongsma MA, Bakker PL, Peters J et al (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92(17):8041–8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T et al (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170(2):203–215

    Article  CAS  Google Scholar 

  • Karthikeyan A, Sudha M, Pandiyan M et al (2011) Screening of MYMV resistant mungbean (Vigna radiata (L) Wilczek) progenies through agroinoculation. Int J Plant Pathol 2(3):115–125

    Article  Google Scholar 

  • Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11(4):411–423

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Jang IC, Wu R (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12(4):475–484

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1977) Disease and insect resistance in rice. Adv Agron 29:265–341

    Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R et al (2003) A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165(5):969–976

    Google Scholar 

  • Le DT, Chu HD, Sasaya T (2015) Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus. GM Crops Food 6(1):47–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Muhsin M, Atienza GA et al (2010) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol Plant Microbe Interact 23(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu X, Xing H, Zhu H, Fan Q (2005) Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+ sbti transgenes. Pest Manage Sci Formerly Pestic Sci 61(4):390–396

    Google Scholar 

  • Li P, Pei Y, Sang X et al (2009) Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol 125(4):533

    Article  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K et al (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13(7):686

    CAS  Google Scholar 

  • Liu Q, Yuan M, Zhou YAN et al (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34(11):1958–1969

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Wu H, Chen H, et al (2015) A gene cluster encoding lectin receptor kinases confers broadspectrum and durable insect resistance in rice. Nat Biotechnol 33:301–305. https://doi.org/10.1038/nbt.3069

  • Maqbool SB, Husnain T, Riazuddin S et al (1998) Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M 7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene. Mol Breed 4(6):501–507

    Article  CAS  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK et al (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2013) Crop pests: under attack. Nature 501(7468):S15–S17

    Article  CAS  PubMed  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma NP, ... Rao KV (2003) Transgenic indica rice resistant to sap‐sucking insects. Plant Biotechnol J 1(3):231–240

    Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar R, Babu S, Kalpana K et al (2007) Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol Plant 51(1):142–148

    Article  CAS  Google Scholar 

  • Nayak P, Basu D, Das S et al (1997) Transgenic elite indica rice plants expressing CryIAc ∂-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA 94(6):2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndjiondjop MN, Albar L, Fargette D et al (1999) The genetic basis of high resistance to rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Dis 83(10):931–935

    Article  CAS  PubMed  Google Scholar 

  • Ou SH, SH O (1980) Pathogen variability and host resistance in rice blast disease

    Google Scholar 

  • Ou SH (1985) Rice diseases. IRRI

    Google Scholar 

  • Pinto YM, Kok RA, Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotechnol 17(7):702

    Article  CAS  PubMed  Google Scholar 

  • Piper R (2011) Pests: a guide to the world’s most maligned, yet misunderstood creatures. Greenwood Press, California

    Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S et al (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8(1):19

    Article  PubMed Central  Google Scholar 

  • Rahbe Y, Deraison C, Bonade-Bottino M, Girard C, Nardon C, Jouanin L (2003) Effects of the cysteine protease inhibitor oryzacystatin on different expression (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci 164:441–450

    Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166(4):1077–1085

    Google Scholar 

  • Ribeiro AD, Pereira EJ, Galvan TL, Picanco MC, Picoli ED, Da Silva DJH, ... Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. J Appl Entomol 130(2):84–90

    Google Scholar 

  • Richa K, Tiwari IM, Devanna BN, Botella JR, Sharma V, Sharma TR (2017) Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front Plant Sci 8:596

    Google Scholar 

  • Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, ... Wang F (2007) Dramatic reduction of crop‐to‐crop gene flow within a short distance from transgenic rice fields. New Phytolog 173(2):346–353

    Google Scholar 

  • Saha P, Dasgupta I, Das S (2006) A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol 62(4–5):735–752

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84(3):357–369

    Google Scholar 

  • Sebastian LS, Ikeda R, Huang N et al (1996) Molecular mapping of resistance to rice tungro spherical virus and green leafhopper. Phytopathology 86(1):25–30

    Article  CAS  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31(2):239

    Article  CAS  PubMed  Google Scholar 

  • Shah JM, Singh R, Veluthambi K (2013) Transgenic rice lines constitutively co-expressing tlp-D34 and chi11 display enhancement of sheath blight resistance. Biol Plant 57(2):351–358

    Article  CAS  Google Scholar 

  • Sharma TR, Shanker P, Singh BK, Jana TK, Madhav MS, Gaikwad K, Singh NK, ... Rathour R (2005) Molecular mapping of rice blast resistance gene Pi-kh in the rice variety Tetep. J Plant Biochem Biotechnol 14(2):127–133

    Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna BN, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agricult Res 1(1):37–52

    Google Scholar 

  • Sharma S, Kumar G, Dasgupta I (2018) Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 255:157–164

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yoshii M, Wei T et al (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechol J 7(1):24–32

    Article  CAS  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Akita F et al (2011a) Immunity to rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res 160(1–2):400–403

    Google Scholar 

  • Shimizu T, Nakazono‐Nagaoka E, Uehara‐Ichiki T et al (2011b) Targeting specific genes for RNA interference is crucial to the development of strong resistance to rice stripe virus. Plant Biotechnol J 9(4):503–512

    Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Akita F et al (2012) Hairpin RNA derived from the gene for Pns9, a viroplasm matrix protein of rice gall dwarf virus, confers strong resistance to virus infection in transgenic rice plants. J Biotechnol 157(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Ogamino T, Hiraguri A et al (2013) Strong resistance against rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103(5):513–519

    Article  PubMed  Google Scholar 

  • Shu Q, Ye G, Cui H, et al (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Molecular Breeding 6:433–439. https://doi.org/10.1023/A:1009658024114

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Sridevi G, Sabapathi N, Meena P et al (2003) Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J Plant Biochem Biotechnol 12(2):93–101

    Article  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N et al (2008) Combined expression of chitinase and β-1, 3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175(3):283–290

    Google Scholar 

  • Sun X, Cao Y, Yang Z et al (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase‐like protein. Plant J 37(4):517–527

    Google Scholar 

  • Sun L, Lin C, Du J et al (2016) Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Plant Cell Tissue Organ Cult 126(1):127–139

    Article  CAS  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Ann Rev Microbiol 57(1):177–202

    Google Scholar 

  • Tian D, Wang J, Zeng X et al (2014) The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26(1):497–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z-X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki Takuji (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Google Scholar 

  • Wang Y, Li Y, Romeis J, Chen X, Zhang J, Chen H, Peng Y (2012) Consumption of Bt rice pollen expressing Cry2Aa does not cause adverse effects on adult Chrysoperla sinica Tjeder (Neuroptera: Chrysopidae). Biol Control 61(3):246–251

    Google Scholar 

  • Wang Q, Liu Y, He J et al (2014) STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nature Commun 5(1):1–8

    Google Scholar 

  • Wang C, Zhang X, Fan Y et al (2015) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8(2):290–302

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li W, Zhu J et al (2016) Hairpin RNA targeting multiple viral genes confers strong resistance to rice black-streaked dwarf virus. Int J Mol Sci 17(5):705

    Article  PubMed Central  CAS  Google Scholar 

  • Wani SH, Sah SK (2014) Biotechnology and abiotic stress tolerance in rice. J Rice Res 2:e105

    Google Scholar 

  • Wankhede DP, Misra M, Singh P, Sinha AK (2013) Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PloS One 8(5):e65011

    Google Scholar 

  • Wu J, Yang Z, Wang Y et al (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4:e05733. https://doi.org/10.7554/eLife.05733

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang Z, Zhang J et al (2010) Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J Appl Entomol 134(5):429–438

    Article  CAS  Google Scholar 

  • Yoshii M, Shimizu T, Yamazaki M et al (2009) Disruption of a novel gene for a NAC‐domain protein in rice confers resistance to rice dwarf virus. Plant J 57(4):615–625

    Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y et al (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95(4):1663–1668

    Google Scholar 

  • Yuan HX, Xu XP, Zhang JZ et al (2004) Characteristics of resistance to rice sheath blight of zhongda 2, a transgenic rice line as modified by gene “RC24.” Rice Sci 11(4):177–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amolkumar U. Solanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solanke, A.U., Arora, K., Karkute, S.G., Tomar, R.S.S. (2021). Genetic Engineering for Biotic Stress Management in Rice. In: Sarmah, B.K., Borah, B.K. (eds) Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-63372-1_5

Download citation

Publish with us

Policies and ethics