Skip to main content

Advertisement

Log in

A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Rice production is known to be severely affected by virus transmitting rice pests, brown planthopper (BPH) and green leafhopper (GLH) of the order hemiptera, feeding by phloem abstraction. ASAL, a novel lectin from leaves of garlic (Allium sativum) was previously demonstrated to be toxic towards hemipteran pests when administered in artificial diet as well as in ASAL expressing transgenic plants. In this report ASAL was targeted under the control of phloem-specific Agrobacterium rolC and rice sucrose synthase-1 (RSs1) promoters at the insect feeding site into popular rice cultivar, susceptible to hemipteran pests. PCR, Southern blot and C-PRINS analyses of transgenic plants have confirmed stable T-DNA integration and the transgenes were co-segregated among self-fertilized progenies. The T0 and T1 plants, harbouring single copy of intact T-DNA expression cassette, exhibit stable expression of ASAL in northern and western blot analyses. ELISA showed that the level of expressed ASAL was as high as 1.01% of total soluble protein. Immunohistofluorescence localization of ASAL depicted the expected expression patterns regulated by each promoter type. In-planta bioassay studies revealed that transgenic ASAL adversely affect survival, growth and population of BPH and GLH. GLH resistant T1 plants were further evaluated for the incidence of tungro disease, caused by co-infection of GLH vectored Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV), which appeared to be dramatically reduced. The result presented here is the first report of such GLH mediated resistance to infection by RTBV/RTSV in ASAL expressing transgenic rice plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASAL:

Allium sativum agglutinin from leaf

BAP:

benzylamino purine

BPH:

brown planthopper

BSA:

bovine serum albumin

cv.:

cultivar

C-PRINS:

cycling-primed in situ labelling

dpi:

days post inoculation

ELISA:

enzyme linked immunosorbent assay

FITC:

fluorescein isothiocyanate

GLH:

green leafhopper

Hyg:

hygromycin

MS:

Murashige and Skoog

NAA:

α-napthaline acetic acid

PBS:

phosphate buffered saline

RSs1:

rice sucrose synthase-1 promoter

RTBV:

Rice tungro bacilliform virus

RTSV:

Rice tungro spherical virus

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Abbo S, Dunford RP, Miller TE, Reader SM, King IP (1993) Primer-mediated in situ detection of the B-hordein gene cluster on barley chromosome1H. Proc Natl Acad Sci USA 90:11821–11824

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033

    Article  CAS  Google Scholar 

  • Banerjee S, Hess D, Majumder P, Roy D, Das S (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J Biol Chem 279:23782–23789

    Article  PubMed  CAS  Google Scholar 

  • Barre A, Van Damme EJM, Peumaus WJ, Rouge P (1996) Structure-function relationship of monocot mannose-binding lectins. Plant Physiol 112:1531–1540

    Article  PubMed  CAS  Google Scholar 

  • Bennet J (2001) Summing-up: cutting-edge science for rice improvement-breakthroughs and beneficiaries. In: Goode J, Chadwick D (Eds.), Rice biotechnology: improving yield, stress tolerance and grain quality, Novartis Foundation/John Wiley, UK, pp. 242–251

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of proteins using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Chen L, Chen S, Cai H, Liu X, Xiao G, Zhu Z (2003) Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid (Myzus persicae). Transgenic Res 12:607–614

    Article  PubMed  CAS  Google Scholar 

  • Dahal G, Hibino H, Aguiero VM (1997) Population characteristics and tungro transmission by Nephotettix virescens (Hemiptera: Cicadellidea) on selected resistant rice cultivars. Bull Entomol Res 87:387–395

    Article  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Dasgupta I, Das BK, Nath SP, Mukhopadhyay S, Niaiz FR, Varma A (1996) Detection of rice tungro bacilliform virus in field and glasshouse samples from India using the polymerase chain reaction. J Virol Methods 58:53–58

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta I, Hull R, Eastop S, Poggi PC, Blakebrough M, Boulton MI, Davies JW (1991) Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium mediated transfer. J Gen Virol 72:1215–1221

    PubMed  CAS  Google Scholar 

  • Dong J, Kharb P, Cervera M, Hall CT (2001) The use of FISH in chromosomal localization of transgenes in rice. Methods Cell Sci 23:105–113

    Article  PubMed  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005a) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  CAS  Google Scholar 

  • Dutta I, Majumder I, Saha P, Ray K, Das S (2005b) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007

    Article  CAS  Google Scholar 

  • Eamens AL, Blanchard CL, Dennis ES, Upadhyaya NM (2004) A bidirectional gene trap construct for tDNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol J 2:367–380

    Article  CAS  PubMed  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadagon LC, Vuocolo T, Pellam RL (1994) Larvicidal action of lectins on Lucilia cuprina; mechanism of action. Entomol Exp Appl 72:1–11

    Article  CAS  Google Scholar 

  • Fagard M, Vaucheret H (2000) (Trans)gene siliencing in plants: How many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Harrison AHR, Harrison JS (Eds.), Yeast organelles, Academic Press, London, pp 199–277

    Google Scholar 

  • Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol 71:569–577

    PubMed  CAS  Google Scholar 

  • Finnegan J, McElory D (1994) Transgene inactivation: plant fight back! Bio/Technol 12:883–888

    Article  Google Scholar 

  • Fitches E, Woodhouse SD, Edwards JP, Gatehoush JA (2001) In vitro and in vivo binding of snowdrop lectin (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleraceae) larvae; mechanisms of insecticidal action. J Insect Physiol 47:777–787

    Article  PubMed  CAS  Google Scholar 

  • Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    Article  PubMed  CAS  Google Scholar 

  • Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathol 92:576–579

    Google Scholar 

  • Gatehouse AM, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165

    Article  CAS  Google Scholar 

  • Graham MW, Craig S, Waterhouse PM (1997) Expression patterns of vascular-specific promoter RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Mol Biol 33:729–735

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, van den Wilk F, Verbeek M, Goldbach RW, van den Heuvel JFJM (1998) Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J Virol 72:358–365

    PubMed  CAS  Google Scholar 

  • Huet H, Mahendra S, Wang J, Sivamani E, Ong CA, Chen L, de Kochko A, Beachy RN, Fauquet C (1999) Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy. Phytopathol 89:1022–1027

    CAS  Google Scholar 

  • Jacob SS, Valuthambi K (2003) A cointegrate Ti plasmid vector for Agrobacterium tumefaciens-mediated transformation of indiac rice cv Pusa Basmati1. J Plant Biochem Biotech 12:1–9

    CAS  Google Scholar 

  • Jain RK, Jain S (2000) Transgenic strategies for genetic improvement of Basmati rice. Indian J Exp Biol 38:6–17

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS, Wang G-L, Ronald CP, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Jin WW, Li ZY, Fang Q, Altosaar I, Lui LH, Song YC (2002) Fluorescence in situ hybridization analysis of alien genes in Agrobacterium-mediated Cry1A (b)- transformed rice. Ann Bot 90:31–36

    Article  PubMed  CAS  Google Scholar 

  • Jones MC, Gough K, Dasgupta I, Subba-Rao BL, Cliffe J, Qu R, Shen P, Kaniewska M, Blakebrough M, Davies JW, Beachy RN, Hull R (1991) Rice tungro disease is caused by an RNA and a DNA virus. J Gen Virol 72:757–761

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Kubaláková M, Vrana J, Číhalíková J, Lysák MA, Doležel J (2001) Localization of DNA sequences on plant chromosomes using PRINS and C-PRINS. Methods Cell Sci 23:71–82

    Article  PubMed  Google Scholar 

  • Lee SI, Lee S-H, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthoppe (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5:1–9

    Google Scholar 

  • Majumder P, Banerjee S, Das S (2004) Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconjugate J 20:525–530

    Article  CAS  Google Scholar 

  • Matsuki R, Onodera H, Yamauchi T, Uchimiya H (1989) Tissue-specific expression of the rolC promoter of the Ri plasmid in transgenic rice plants. Mol Gen Genet 220:12–16

    Article  CAS  Google Scholar 

  • Mohanty A, Sarma NP, Tyagi AK (1999) Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transformation of the transgene to R2 progey. Plant Sci 147:127–137

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Muskens MWM, Vissers APA, Mol JNM, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260

    Article  PubMed  CAS  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma NP, Brown DP, Gatehouse JA, Reddy VD, Rao KV (2003) Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol J 1:231–240

    Article  CAS  PubMed  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin (gna) exhibit high-level resistance to the whitebacked planthopper (Sogetella furcifera). Theor Appl Genet 109:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Powell KS, Spence J, Bharathi M, Gatehouse AJ, Gatehouse AMR (1998) Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44:529–539

    Article  PubMed  CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar S, Williams P, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse A, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic plants confers resistance to rice brown planthopper. Plant J 15:469– 477

    Article  PubMed  CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1989) Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Wang MB, Powell KS, Damme EV, Hilder VA, Gatehouse AMR, Boulter D, Gatehouse JA (1994) Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot 45:623– 631

    CAS  Google Scholar 

  • Shing RK, Shing US, Khush GS, Rohilla R (2000) Genetics and biotechnology of quality traits in aromatic rices In: Shing RK, Shing US, Khush GS (Eds.), Aromatic rices, Science Publishers Inc, Enfield, NH, USA, pp 47–69

    Google Scholar 

  • Shou H, Frame BR, Whitham SAWK (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Sivamani E, Huet H, Shen P, Ong CA, de-Kochko A, Fauquet C, Beachy RN (1999) Rice plants (Oryza sativa L.) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol Breed 5:177–185

    Article  CAS  Google Scholar 

  • Sudhakar D, Fu X, Stoger E, Williams S, Spence J, Brown DP, Bharathi M, Gatehouse JA, Christou P (1998) Expression and immunolocalization of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res 7:371–378

    Article  PubMed  CAS  Google Scholar 

  • Sugaya S, Hayakawa K, Handa K, Uchimiya H (1989) Cell-specific expression of the rolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plants. Plant Cell Physiol 30:649–653

    CAS  Google Scholar 

  • Suh S-O, Noda H, Blackwell M (2001) Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000

    PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2004) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plant: target, inducers and regulators. Trends Genet 17:29–35

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Boulter D, Gatehouse JA (1992) A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol Biol 19:881–885

    Article  PubMed  CAS  Google Scholar 

  • Wenck A, Czako M, Kanevski I, Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34:913–922

    Article  PubMed  CAS  Google Scholar 

  • Weis WI, Drickaner K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biotechnol 65:441–473

    Article  CAS  Google Scholar 

  • Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16:5247–5259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Council of Scientific and Industrial Research; Government of India for providing fellowships to PS. We are grateful to Prof. S. C. Roy, Centre of Advanced Study (CAS), Cell and Chromosome Research, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, India for his help to carry out C-PRINS study in his laboratory. Authors thank the Programme Coordinator, CAS, Dept. Bot. CU for providing above technical opportunities. We are thankful to Regional Rice Research Station, Chinsurah, West Bengal, India for providing nuclear stock seed of Pusa Basmati 1 rice cultivar. For back up service of Mr. Arup Kumar Dey, BI is sincerely acknowledged. Authors are also thankful to Gautam Basu for critically reading the manuscript. The expert technical help of Anand Singh Rana in viral assays and Trilok Singh Rawat in inoculations of DU(SC) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Das.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, P., Dasgupta, I. & Das, S. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol 62, 735–752 (2006). https://doi.org/10.1007/s11103-006-9054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9054-6

Keywords

Navigation