Skip to main content

Immuno-modulating Mediators of Colon Cancer as Immuno-therapeutic: Mechanism and Potential

  • Chapter
  • First Online:
Colon Cancer Diagnosis and Therapy

Abstract

Colorectal cancer is responsible for more than half of all intestinal malignancies with very high metastatic rate. Although there are vast improvement and advancement made in recent time, surgery still remains the only potentially curative treatment choice. The success of colon cancer surgery depends upon early diagnosis, and it is not an effective choice in patients with advance stage or metastatic stage. Other traditional pharmaceutical therapeutic approaches including chemo-radiotherapy are associated with non-specificity and toxicity. These treatment regimens at best reduce the death rate depending upon time of diagnosis and in metastatic stage have moderate effect on survival time. Alternative therapeutic strategies are clearly needed, and the current thrust is to explore immunotherapy. Immunotherapy in a way is a treatment regimen against a disease in which augmentation of immune response takes place. As with various different classes of advanced-stage cancer, anti-tumour immunotherapy has a broad potential against colon cancer due to its capacity to elicit long-lasting and effective responses across a wide range of tumour. The basis of success of any immunotherapy regimens is the ability of the host immune system to differentiate between “self” and “non-self” and to respond accordingly. This can be either monoclonal antibody (mAb)-mediated-specific immune cell activation therapy or adoptive immune cell-mediated therapy (ACT). This can be achieved by the identification of cancer-associated antigens and development of therapeutic vaccination strategies. These cancer-associated antigens are also referred to as tumour-associated antigens (TAAs) and are mostly the proteins which modulate the host immune response in favour of tumour in the particular tumour microenvironment. These TAAs can be normal proteins which are expressed in normal cells too albeit at low level or “neo-antigens” which originate due to mutation-induced alteration in normal protein, subsequently making these otherwise self-proteins immunogenic. The current chapter deals with the advancement made on the use of these various immuno-modulators as an immuno-therapeutic with special emphasis on the treatment of colon and colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3(3):153.

    PubMed  PubMed Central  Google Scholar 

  2. Colditz GA, Wolin KY, Gehlert S. Applying what we know to accelerate cancer prevention. Sci Transl Med. 2012;4(127):127rv4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chu, K. M. (2011). Epidemiology and risk factors of colorectal cancer. Early Diagnosis and Treatment of Cancer Series: Colorectal Cancer, 1–11.

    Google Scholar 

  4. Parsyan, A., Robichaud, N., & Meterissian, S. (2014). Colorectal Cancers. In Translation and Its Regulation in Cancer Biology and Medicine (pp. 593-610). Springer, Dordrecht.

    Google Scholar 

  5. Souglakos J, Androulakis N, Syrigos K, Polyzos A, Ziras N, Athanasiadis A, et al. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br J Cancer. 2006;94(6):798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50.

    Article  CAS  PubMed  Google Scholar 

  7. Zipfel C. Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol. 2009;12(4):414–20.

    Article  CAS  PubMed  Google Scholar 

  8. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  9. Tseng SY, Dustin ML. T-cell activation: a multidimensional signaling network. Curr Opin Cell Biol. 2002;14(5):575–80.

    Article  CAS  PubMed  Google Scholar 

  10. Vasilevko V, Ghochikyan A, Holterman MJ, Agadjanyan MG. CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol. 2002;21(3):137–49.

    Article  CAS  PubMed  Google Scholar 

  11. Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC. Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol Immunother. 2002;51(10):574–82.

    Article  CAS  PubMed  Google Scholar 

  12. Minev BR. Melanoma vaccines. In: Seminars in oncology, vol. 29, No. 5: WB Saunders; 2002. p. 479–93. Philadelphia, USA.

    Google Scholar 

  13. Schooten E, Di Maggio A, en Henegouwen PMVB, Kijanka MM. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat Rev. 2018;67:54–62.

    Article  CAS  PubMed  Google Scholar 

  14. Djaldetti M, Bessler H. Modulators affecting the immune dialogue between human immune and colon cancer cells. World J Gastrointest Oncol. 2014;6(5):129.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F, Störkel S, Seliger B. MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer. 2004;109(2):265–73.

    Article  CAS  PubMed  Google Scholar 

  16. Mielczarek M, Chrzanowska A, Ścibior D, Skwarek A, Ashamiss F, Lewandowska K, Barańczyk-Kuźma A. Arginase as a useful factor for the diagnosis of colorectal cancer liver metastases. Int J Biol Markers. 2006;21:40.

    Article  CAS  PubMed  Google Scholar 

  17. Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mut Res/Fundamental and Molecular Mechanisms of Mutagenesis. 2004;555(1-2):107–19.

    Article  CAS  Google Scholar 

  18. Bei R, Scardino A. TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. Biomed Res Int. 2010;2010:Article ID 102758.

    Google Scholar 

  19. Brody JD, Engleman EG. DC-based cancer vaccines: lessons from clinical trials. Cytotherapy. 2004;6(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Chang CH, Goldenberg DM. Novel strategies for improved cancer vaccines. Expert Rev Vaccines. 2009;8(5):567–76.

    Article  CAS  PubMed  Google Scholar 

  21. Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY. Strategies for cancer vaccine development. Biomed Res Int. 2010;2010:Article ID 596432.

    Google Scholar 

  22. Ferri M, Del Monte SR, Salerno G, Bocchetti T, Angeletti S, Malisan F, et al. Recovery of immunological homeostasis positively correlates both with early stages of right-colorectal cancer and laparoscopic surgery. PLoS One. 2013;8(9):e74455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hong S, Hwang I, Lee YS, Park S, Lee WK, Fernandes-Alnemri T, et al. Restoration of ASC expression sensitizes colorectal cancer cells to genotoxic stress-induced caspase-independent cell death. Cancer Lett. 2013;331(2):183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101–14.

    Article  PubMed  CAS  Google Scholar 

  25. Maeda K, Hazama S, Tokuno K, Kan S, Maeda Y, Watanabe Y, et al. Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity. Anticancer Res. 2011;31(12):4569–74.

    CAS  PubMed  Google Scholar 

  26. Galon J, Fridman WH, Pagès F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67(5):1883–6.

    Article  CAS  PubMed  Google Scholar 

  27. Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. In: Seminars in immunology, vol. 25, No. 2: Academic Press; 2013. p. 182–90. Philadelphia, USA.

    Google Scholar 

  28. Noguchi M, Sasada T, Itoh K. Personalized peptide vaccination: a new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol Immunother. 2013;62(5):919–29.

    Article  CAS  PubMed  Google Scholar 

  29. Villa-Morales M, Fernández-Piqueras J. Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):85–101.

    Article  CAS  PubMed  Google Scholar 

  30. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci. 2001;98(15):8809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther. 2008;8(12):1873–84.

    Article  CAS  PubMed  Google Scholar 

  32. Locy H, De Mey S, De Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the tumor microenvironment: turn foe into friend. Front Immunol. 2018;9:2909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen‐presenting cells pulsed with tumor extracts. Int J Cancer. 1997;70(6):706–18.

    Article  CAS  PubMed  Google Scholar 

  34. Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today. 2000;21(9):455–64.

    Article  CAS  PubMed  Google Scholar 

  35. Evans C, Dalgleish AG, Kumar D. Immune suppression and colorectal cancer. Aliment Pharmacol Ther. 2006;24(8):1163–77.

    Article  CAS  PubMed  Google Scholar 

  36. Merika E, Saif MW, Katz A, Syrigos C, Morse M. Colon cancer vaccines: an update. In Vivo. 2010;24(5):607–28.

    CAS  PubMed  Google Scholar 

  37. Roovers RC, Van der Linden E, de Bruı̈ne AP, Arends JW, Hoogenboom HR. Identification of colon tumour-associated antigens by phage antibody selections on primary colorectal carcinoma. Eur J Cancer. 2001;37(4):542–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bonertz A, Weitz J, Pietsch DHK, Rahbari NN, Schlude C, Ge Y, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest. 2009;119(11):3311–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jameson SC, Masopust D. Understanding subset diversity in T cell memory. Immunity. 2018;48(2):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol. 2018;9:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hotakainen K, Ljungberg B, Paju A, Rasmuson T, Alfthan H, Stenman UH. The free β-subunit of human chorionic gonadotropin as a prognostic factor in renal cell carcinoma. Br J Cancer. 2002;86(2):185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Yin M, Song W, Cui F, Wang W, Wang S, Zhu H. B subunit of human chorionic gonadotropin promotes tumor invasion and predicts poor prognosis of early-stage colorectal cancer. Cell Physiol Biochem. 2018;45(1):237–49.

    Article  CAS  PubMed  Google Scholar 

  43. Arora SP, Mahalingam D. Immunotherapy in colorectal cancer: for the select few or all? J Gastroint Oncol. 2018;9(1):170.

    Article  Google Scholar 

  44. Galat A. Common structural traits for cystine knot domain of the TGFβ superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell Mol Life Sci. 2011;68(20):3437–51.

    Article  CAS  PubMed  Google Scholar 

  45. Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a β-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8(7):2044–51.

    CAS  PubMed  Google Scholar 

  46. Tsuruma T, Hata F, Furuhata T, Ohmura T, Katsuramaki T, Yamaguchi K, et al. Peptide-based vaccination for colorectal cancer. Expert Opin Biol Ther. 2005;5(6):799–807.

    Article  CAS  PubMed  Google Scholar 

  47. Dlamini Z, Khoza T, Hull R, Choene M, Mkhize-Kwitshana Z. Current immunotherapeutic treatments in colon cancer. Colorectal cancer: from pathogenesis to treatment. Colorectal Cancer. 2016:211.

    Google Scholar 

  48. Margalit O, Mamtani R, Yang YX, Reiss KA, Golan T, Halpern N, et al. Assessing the prognostic value of carcinoembryonic antigen levels in stage I and II colon cancer. Eur J Cancer. 2018;94:1–5.

    Article  CAS  PubMed  Google Scholar 

  49. Campos-da-Paz M, Dórea JG, Galdino AS, Lacava ZG, de Fatima Menezes Almeida Santos M. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Pat Biotechnol. 2018;12(4):269–79.

    Article  CAS  PubMed  Google Scholar 

  50. Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)‐expressing colon cancer using genetically modified dendritic cells that express CEA and T helper‐type 1 cytokines in CEA transgenic mice. Int J Cancer. 2007;120(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  51. Naveed A, Rahman SU, Arshad MI, Aslam B. Recapitulation of the anti-idiotype antibodies as vaccine candidate. Transl Med Commun. 2018;3(1):1.

    Article  Google Scholar 

  52. Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology. 2018;153(3):304–14.

    Article  CAS  PubMed  Google Scholar 

  53. Bashir B, Snook AE. Immunotherapy regimens for metastatic colorectal carcinomas. Hum Vaccin Immunother. 2018;14(2):250–4.

    Article  PubMed  Google Scholar 

  54. Harrop R, Connolly N, Redchenko I, Valle J, Saunders M, Ryan MG, et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res. 2006;12(11):3416–24.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang RT, Bines SD, Ruby C, Kaufman HL. TroVax® vaccine therapy for renal cell carcinoma. Immunotherapy. 2012;4(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  56. Comeau JM, Labruzzo MB. From bench to bedside: promising colon cancer clinical trials. Am J Manag Care. 2013;19(1 Spec No):SP32.

    Google Scholar 

  57. Song LJ, Liu RJ, Zeng Z, Alper SL, Cui HJ, Lu Y, et al. Gastrin inhibits a novel, pathological colon cancer signaling pathway involving EGR1, AE2, and P-ERK. J Mol Med. 2012;90(6):707–18.

    Article  CAS  PubMed  Google Scholar 

  58. Raghav K, Bailey AM, Loree JM, Kopetz S, Holla V, Yap TA, et al. Untying the gordion knot of targeting MET in cancer. Cancer Treat Rev. 2018;66:95–103.

    Article  CAS  PubMed  Google Scholar 

  59. Senzer N, Barve M, Kuhn J, Melnyk A, Beitsch P, Lazar M, et al. Phase I trial of “bi-shRNAifurin/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol Ther. 2012;20(3):679–86.

    Article  CAS  PubMed  Google Scholar 

  60. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–9.

    Article  CAS  PubMed  Google Scholar 

  61. Xiang B, Snook AE, Magee MS, Waldman SA. Colorectal cancer immunotherapy. Discov Med. 2013;15(84):301.

    PubMed  PubMed Central  Google Scholar 

  62. Lindenmann J, Klein PA. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med. 1967;126(1):93–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winter H, Fox BA, Rüttinger D. Future of cancer vaccines. In: Cancer Vaccines. New York: Humana Press; 2014. p. 555–64.

    Chapter  Google Scholar 

  64. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.

    Article  PubMed  Google Scholar 

  65. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018;6(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tang J, Pearce L, O'Donnell-Tormey J, Hubbard-Lucey VM. Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018;17:783.

    Article  CAS  PubMed  Google Scholar 

  67. Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment. Front Immunol. 2018;9:2103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jing Y, Chavez V, Khatwani NK, Merchan J. Antitumor efficacy of a dual stromal and tumor targeted oncolytic measles virus in breast and colon cancer models. Cancer Res. 2018;78:5920.

    Article  Google Scholar 

  69. Twumasi-Boateng K, Pettigrew JL, Kwok YE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer. 2018;18(7):419–32.

    Article  CAS  PubMed  Google Scholar 

  70. Toda M, Martuza RL, Kojima H, Rabkin SD. In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity. J Immunol. 1998;160(9):4457–64.

    Article  CAS  PubMed  Google Scholar 

  71. Toda M, Rabkin SD, Kojima H, Martuza RL. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther. 1999;10(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  72. Bauzon M, Hermiston T. Armed therapeutic viruses–a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol. 2014;5:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chiocca EA. Oncolytic viruses. Nat Rev Cancer. 2002;2(12):938–50.

    Article  PubMed  CAS  Google Scholar 

  74. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513.

    Article  CAS  PubMed  Google Scholar 

  75. Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol. 2018;9:866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Struzik J, Szulc-Dąbrowska L. NF-κB signaling in targeting tumor cells by oncolytic viruses—therapeutic perspectives. Cancers. 2018;10(11):426.

    Article  CAS  PubMed Central  Google Scholar 

  77. Jamal M, Oglu A. Review of the basis for oncolytic virotherapy and development of the genetically modified tumor-specific viruses. MedBioTech J. 2018;2(03):95–102.

    Google Scholar 

  78. Yamaguchi T, Uchida E. Oncolytic virus: regulatory aspects from quality control to clinical studies. Curr Cancer Drug Targets. 2018;18(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  79. Saini J, Sharma PK. Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Curr Drug Targets. 2018;19(13):1478–90.

    Article  CAS  PubMed  Google Scholar 

  80. Nylandsted J, Brand K, Jäättelä M. Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci. 2000;926(1):122–5.

    Article  CAS  PubMed  Google Scholar 

  81. Olotu F, Adeniji E, Agoni C, Bjij I, Khan S, Elrashedy A, Soliman M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discovery. 2018;13(10):903–18.

    Article  CAS  Google Scholar 

  82. Kelly M, McNeel D, Fisch P, Malkovsky M. Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunol Lett. 2018;193:1–10.

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Wang Q, Lin H, Li S, Sun L, Yang Y. HSP72 and gp96 in gastroenterological cancers. Clin Chim Acta. 2013;417:73–9.

    Article  CAS  PubMed  Google Scholar 

  84. Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol. 2002;14(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  85. Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Front Immunol. 2012;3:63.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shevtsov M, Multhoff G. Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol. 2016;7:171.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Huang C, Zhao J, Li Z, Li D, Xia D, Wang Q, Jin H. Multi-chaperone-peptide-rich mixture from colo-carcinoma cells elicits potent anticancer immunity. Cancer Epidemiol. 2010;34(4):494–500.

    Article  CAS  PubMed  Google Scholar 

  88. Liu B, Ye D, Song X, Zhao X, Yi L, Song J, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine. 2008;26(10):1387–96.

    Article  CAS  PubMed  Google Scholar 

  89. Jensen‐Jarolim E, Bax HJ, Bianchini R, Crescioli S, Daniels‐Wells TR, Dombrowicz D, et al. AllergoOncology: opposite outcomes of immune tolerance in allergy and cancer. Allergy. 2018;73(2):328–40.

    Article  PubMed  Google Scholar 

  90. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer. 2018;9(10):1773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

    Article  CAS  PubMed  Google Scholar 

  95. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev. 2014;257(1):14–38.

    Article  PubMed  Google Scholar 

  96. Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G. Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol. 2003;46(1):33–57.

    Article  PubMed  Google Scholar 

  97. Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, et al. Apoptosis of tumor infiltrating effector TIM-3+ CD8+ T cells in colon cancer. Sci Rep. 2015;5(1):1–12.

    Article  Google Scholar 

  98. Delorme EJ, Alexander P. Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet. 1964;284(7351):117–20.

    Article  Google Scholar 

  99. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313(23):1485–92.

    Article  CAS  PubMed  Google Scholar 

  101. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baggio L, Laureano ÁM, da Rocha Silla LM, Lee DA. Natural killer cell adoptive immunotherapy: coming of age. Clin Immunol. 2017;177:3–11.

    Article  CAS  PubMed  Google Scholar 

  103. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  106. Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Klampfer L. Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets. 2011;11(4):451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Han SY, Choung SY, Paik IS, Kang HJ, Choi YH, KIM SJ, Lee MO. Activation of NF-κB determines the sensitivity of human colon cancer cells to TNFα-induced apoptosis. Biol Pharm Bull. 2000;23(4):420–6.

    Article  CAS  PubMed  Google Scholar 

  109. Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D 3. Oncogene. 2009;28(44):3892–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Voronov E, Dotan S, Krelin Y, Song X, Elkabets M, Carmi Y, et al. Unique versus redundant functions of IL-1α and IL-1β in the tumor microenvironment. Front Immunol. 2013;4:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11(1):87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Myint ZW, Goel G. Role of modern immunotherapy in gastrointestinal malignancies: a review of current clinical progress. J Hematol Oncol. 2017;10(1):86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kurzrock R, Hickish T, Wyrwicz L, Saunders M, Wu Q, Stecher M, et al. Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1α antibody, in a phase III randomized study of advanced colorectal cancer. Onco Targets Ther. 2019;8(3):1551651.

    Google Scholar 

  114. Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell. 2009;15(2):79–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li YY, Hsieh LL, Tang RP, Liao SK, Yeh KY. Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum Immunol. 2009;70(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  116. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121(9):3375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Waldner MJ, Foersch S, Neurath MF. Interleukin-6-a key regulator of colorectal cancer development. Int J Biol Sci. 2012;8(9):1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Amit A, Dikhit MR, Singh AK, Kumar V, Suman SS, Singh A, et al. Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in Balb/c mice. Mol Immunol. 2017;82:104–13.

    Article  CAS  PubMed  Google Scholar 

  119. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Doulabi H, Rastin M, Shabahangh H, Maddah G, Abdollahi A, Nosratabadi R, et al. Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed Pharmacother. 2018;103:1101–6.

    Article  CAS  PubMed  Google Scholar 

  121. Ibrahim S, Girault A, Ohresser M, Lereclus E, Paintaud G, Lecomte T, Raoul W. Monoclonal antibodies targeting the IL-17/IL-17RA axis: an opportunity to improve the efficiency of anti-VEGF therapy in fighting metastatic colorectal cancer? Clin Colorectal Cancer. 2018;17(1):e109–13.

    Article  PubMed  Google Scholar 

  122. Mésange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5(13):4709.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 2005;12(3):228–37.

    Article  CAS  PubMed  Google Scholar 

  124. Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med. 2013;19(11):685–94.

    Article  CAS  PubMed  Google Scholar 

  125. von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer. 2017;17(6):352.

    Article  CAS  Google Scholar 

  126. Françoso A, Simioni PU. Immunotherapy for the treatment of colorectal tumors: focus on approved and in-clinical-trial monoclonal antibodies. Drug Des Devel Ther. 2017;11:177.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kaplon H, Reichert JM. Antibodies to watch in 2019. In: MAbs, vol. 11, No. 2: Taylor & Francis; 2019. p. 219–38. Oxfordshire,UK.

    Google Scholar 

  128. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    Article  CAS  PubMed  Google Scholar 

  129. Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. In: MAbs, vol. 8, No. 7: Taylor & Francis; 2016. p. 1177–94. Oxfordshire,UK.

    Google Scholar 

  130. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–47.

    Article  CAS  PubMed  Google Scholar 

  131. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: a review. Pharmacol Ther. 2018;185:122–34.

    Article  CAS  PubMed  Google Scholar 

  132. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? In: MAbs, vol. 1, No. 6: Taylor & Francis; 2009. p. 539–47. Oxfordshire,UK.

    Google Scholar 

  134. Dienstmann R, De Dosso S, Felip E, Tabernero J. Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer. Mol Oncol. 2012;6(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  135. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8(6):215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  137. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136(3):334–42.

    Article  CAS  PubMed  Google Scholar 

  138. Hoffman L, Gore L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE® antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol. 2014;4:63.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19‐/CD3‐bispecific single‐chain antibody construct. Int J Cancer. 2005;115(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  140. Fujimoto M, Poe JC, Inaoki M, Tedder TF. CD19 regulates B lymphocyte responses to transmembrane signals. In: Seminars in immunology, vol. 10, No. 4: Academic Press; 1998. p. 267–77. Cambridge,UK.

    Google Scholar 

  141. Brandl C, Haas C, d’Argouges S, Fisch T, Kufer P, Brischwein K, et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother. 2007;56(10):1551–63.

    Article  CAS  PubMed  Google Scholar 

  142. Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbüse R, Schlereth B, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214(6):441–53.

    Article  CAS  PubMed  Google Scholar 

  143. Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol. 2016;100(2):275–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bootz F, Neri D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov Today. 2016;21(1):180–9.

    Article  CAS  PubMed  Google Scholar 

  145. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355–60.

    Article  CAS  PubMed  Google Scholar 

  146. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Darvin P, Toor SM, Nair VS, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.

    Article  PubMed  CAS  Google Scholar 

  148. Bailey AM, Mao Y, Zeng J, Holla V, Johnson A, Brusco L, et al. Implementation of biomarker-driven cancer therapy: existing tools and remaining gaps. Discov Med. 2014;17(92):101.

    PubMed  PubMed Central  Google Scholar 

  149. Goel HL, AM M. Mercurio AM VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  151. Martins SF, Reis RM, Rodrigues AM, Baltazar F, Longatto Filho A. Role of endoglin and VEGF family expression in colorectal cancer prognosis and anti-angiogenic therapies. World J Clin Oncol. 2011;2(6):272.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tol J, Punt CJ. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clin Ther. 2010;32(3):437–53.

    Article  CAS  PubMed  Google Scholar 

  153. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol. 2004;17(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  154. Clarke JM, Hurwitz HI. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther. 2013;13(8):1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saif MW. Anti-VEGF agents in metastatic colorectal cancer (mCRC): are they all alike? Cancer Manag Res. 2013;5:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2):S21–6.

    Article  CAS  Google Scholar 

  157. Peeters M, Cohn A, Köhne CH, Douillard JY. Panitumumab in combination with cytotoxic chemotherapy for the treatment of metastatic colorectal carcinoma. Clin Colorectal Cancer. 2012;11(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  158. Vale CL, Tierney JF, Fisher D, Adams RA, Kaplan R, Maughan TS, et al. Does anti-EGFR therapy improve outcome in advanced colorectal cancer? A systematic review and meta-analysis. Cancer Treat Rev. 2012;38(6):618–25.

    Article  CAS  PubMed  Google Scholar 

  159. You B, Chen EX. Anti-EGFR monoclonal antibodies for treatment of colorectal cancers: development of cetuximab and panitumumab. J Clin Pharmacol. 2012;52(2):128–55.

    Article  CAS  PubMed  Google Scholar 

  160. Son CH, Bae JH, Shin DY, Lee HR, Choi YJ, Jo WS, et al. CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. J Immunother. 2014;37(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  161. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  162. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte–associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  165. Gregor PD, Wolchok JD, Ferrone CR, Buchinshky H, Guevara-Patiño JA, Perales MA, et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine. 2004;22(13-14):1700–8.

    Article  CAS  PubMed  Google Scholar 

  166. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.

    Article  CAS  PubMed  Google Scholar 

  168. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  169. Andre T, Lonardi S, Wong KYM, Morse M, McDermott RS, Hill AG, et al. Combination of nivolumab (nivo)+ ipilimumab (ipi) in the treatment of patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC): CheckMate 142 study. J Clin Oncol. 2017;35(suppl 15):3531a.

    Article  Google Scholar 

  170. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–54.

    Article  CAS  PubMed  Google Scholar 

  171. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood J Am Soc Hematol. 2010;116(8):1291–8.

    CAS  Google Scholar 

  173. Paterson AM, Brown KE, Keir ME, Vanguri VK, Riella LV, Chandraker A, et al. The programmed death-1 ligand 1: B7-1 pathway restrains diabetogenic effector T cells in vivo. J Immunol. 2011;187(3):1097–105.

    Article  CAS  PubMed  Google Scholar 

  174. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Huard B, Gaulard P, Faure F, Hercend T, Triebel F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics. 1994;39(3):213–7.

    Article  CAS  PubMed  Google Scholar 

  176. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29.

    Article  CAS  PubMed  Google Scholar 

  177. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27.

    Article  CAS  PubMed  Google Scholar 

  178. Zhou G, Noordam L, Sprengers D, Doukas M, Boor PP, van Beek AA, et al. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Onco Targets Ther. 2018;7(7):e1448332.

    Google Scholar 

  179. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR. TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther. 2018;11:7005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T, Chen W. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res. 2020;386(1):111719.

    Article  CAS  PubMed  Google Scholar 

  181. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA. The TIGIT/CD226 axis regulates human T cell function. J Immunol. 2012;188(8):3869–75.

    Article  CAS  PubMed  Google Scholar 

  182. Kurtulus S, Sakuishi K, Zhang H, Joller N, Tan D, Smyth M, et al. Mechanisms of TIGIT-driven immune suppression in cancer. J Immunother Cancer. 2014;2(S3):O13.

    Article  PubMed Central  Google Scholar 

  183. Ma B, Duan X, Zhou Q, Liu J, Yang X, Zhang D, et al. Use of aspirin in the prevention of colorectal cancer through TIGIT‐CD155 pathway. J Cell Mol Med. 2019;23(7):4514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bartkowiak T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol. 2015;5:117.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Cheuk AT, Mufti GJ, Guinn BA. Role of 4-1BB: 4-1BB ligand in cancer immunotherapy. Cancer Gene Ther. 2004;11(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  186. Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol. 2002;169(9):4882–8.

    Article  PubMed  Google Scholar 

  187. Stärck L, Scholz C, Dörken B, Daniel PT. Costimulation by CD137/4–1BB inhibits T cell apoptosis and induces Bcl‐xL and c‐FLIPshort via phosphatidylinositol 3‐kinase and AKT/protein kinase B. Eur J Immunol. 2005;35(4):1257–66.

    Article  PubMed  CAS  Google Scholar 

  188. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood J Am Soc Hematol. 2018;131(1):49–57.

    CAS  Google Scholar 

  189. James AM, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;4:481.

    Google Scholar 

  190. Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, et al. Targeting CD137 enhances the efficacy of cetuximab. J Clin Invest. 2014;124(6):2668–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schaer DA, Cohen AD, Wolchok JD. Anti-GITR antibodies--potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs (London, England: 2000). 2010;11(12):1378–86.

    CAS  Google Scholar 

  192. Kanamaru F, Youngnak P, Hashiguchi M, Nishioka T, Takahashi T, Sakaguchi S, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol. 2004;172(12):7306–14.

    Article  CAS  PubMed  Google Scholar 

  193. Ronchetti S, Nocentini G, Bianchini R, Krausz LT, Migliorati G, Riccardi C. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J Immunol. 2007;179(9):5916–26.

    Article  CAS  PubMed  Google Scholar 

  194. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP. Triggering of OX40 (CD134) on CD4+ CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood. 2005;105(7):2845–51.

    Article  CAS  PubMed  Google Scholar 

  195. Mitsui J, Nishikawa H, Muraoka D, Wang L, Noguchi T, Sato E, et al. Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res. 2010;16(10):2781–91.

    Article  CAS  PubMed  Google Scholar 

  196. Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med. 2013;210(9):1685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cohen AD, Schaer DA, Liu C, Li Y, Hirschhorn-Cymmerman D, Kim SC, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One. 2010;5(5):e10436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T-cell lineage stability. Cancer Immunol Res. 2013;1(5):320–31.

    Article  CAS  PubMed  Google Scholar 

  199. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25(5):759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Eliopoulos AG, Young LS. The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol. 2004;4(4):360–7.

    Article  CAS  PubMed  Google Scholar 

  201. van Kooten C, Banchereau J. CD40‐CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.

    Article  PubMed  Google Scholar 

  202. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994;1(3):167–78.

    Article  CAS  PubMed  Google Scholar 

  203. Burington B, Yue P, Shi X, Advani R, Lau JT, Tan J, et al. CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma. Sci Transl Med. 2011;3(74):74ra22.

    Article  PubMed  Google Scholar 

  204. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vonderheide RH. CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 2019;71:41.

    Google Scholar 

  206. Pang X, Zhang L, Wu J, Ma C, Mu C, Zhang G, Chen W. Expression of CD40/CD40L in colon cancer, and its effect on proliferation and apoptosis of SW48 colon cancer cells. J BUON. 2017;22(4):894–9.

    PubMed  Google Scholar 

  207. Baumann R, Yousefi S, Simon D, Russmann S, Mueller C, Simon HU. Functional expression of CD134 by neutrophils. Eur J Immunol. 2004;34(8):2268–75.

    Article  CAS  PubMed  Google Scholar 

  208. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity. 2001;15(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  209. Arestides RS, He H, Westlake RM, Chen AI, Sharpe AH, Perkins DL, Finn PW. Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation. Eur J Immunol. 2002;32(10):2874–80.

    Article  CAS  PubMed  Google Scholar 

  210. Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med. 2009;206(5):1103–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther. 2002;6(4):528–36.

    Article  CAS  PubMed  Google Scholar 

  212. Petty JK, He K, Corless CL, Vetto JT, Weinberg AD. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am J Surg. 2002;183(5):512–8.

    Article  CAS  PubMed  Google Scholar 

  213. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013;73(24):7189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Weixler B, Cremonesi E, Sorge R, Muraro MG, Delko T, Nebiker CA, et al. OX40 expression enhances the prognostic significance of CD8 positive lymphocyte infiltration in colorectal cancer. Oncotarget. 2015;6(35):37588.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood J Am Soc Hematol. 2018;131(1):39–48.

    CAS  Google Scholar 

  216. Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the'high-hanging fruit'. Nat Rev Drug Discov. 2018;17(3):197.

    Article  CAS  PubMed  Google Scholar 

  217. Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, Giles F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018;6(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med. 2018;50(8):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Lassen UN, Meulendijks D, Siu LL, Karanikas V, Mau-Sorensen M, Schellens JH, et al. A phase I monotherapy study of RG7212, a first-in-class monoclonal antibody targeting TWEAK signaling in patients with advanced cancers. Clin Cancer Res. 2015;21(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  221. Ciprotti M, Tebbutt NC, Lee FT, Lee ST, Gan HK, McKee DC, et al. Phase I imaging and pharmacodynamic trial of CS-1008 in patients with metastatic colorectal cancer. J Clin Oncol. 2015;33(24):2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Takeda M, Okamoto I, Nishimura Y, Nakagawa K. Nimotuzumab, a novel monoclonal antibody to the epidermal growth factor receptor, in the treatment of non-small cell lung cancer. Lung Cancer Targets Ther. 2011;2:59.

    CAS  Google Scholar 

  223. Becerra CR, Salazar R, Garcia-Carbonero R, Thomas AL, Vázquez-Mazón FJ, Cassidy J, et al. Figitumumab in patients with refractory metastatic colorectal cancer previously treated with standard therapies: a nonrandomized, open-label, phase II trial. Cancer Chemother Pharmacol. 2014;73(4):695–702.

    Article  CAS  PubMed  Google Scholar 

  224. Rocha Lima CM, Bayraktar S, Flores AM, MacIntyre J, Montero A, Baranda JC, et al. Phase Ib study of drozitumab combined with first-line mFOLFOX6 plus bevacizumab in patients with metastatic colorectal cancer. Cancer Investig. 2012;30(10):727–31.

    Article  CAS  Google Scholar 

  225. Herbertson RA, Tebbutt NC, Lee FT, Gill S, Chappell B, Cavicchiolo T, et al. Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine. J Nucl Med. 2014;55(4):534–9.

    Article  CAS  PubMed  Google Scholar 

  226. Doi T, Muro K, Yoshino T, Fuse N, Ura T, Takahari D, et al. Phase 1 pharmacokinetic study of MK-0646 (dalotuzumab), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in combination with cetuximab and irinotecan in Japanese patients with advanced colorectal cancer. Cancer Chemother Pharmacol. 2013;72(3):643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lin EH, Lenz HJ, Saleh MN, Mackenzie MJ, Knost JA, Pathiraja K, et al. A randomized, phase II study of the anti‐insulin‐like growth factor receptor type 1 (IGF‐1R) monoclonal antibody robatumumab (SCH 717454) in patients with advanced colorectal cancer. Cancer Med. 2014;3(4):988–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Weekes CD, Beeram M, Tolcher AW, Papadopoulos KP, Gore L, Hegde P, et al. A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Investig New Drugs. 2014;32(4):653–60.

    Article  CAS  Google Scholar 

  229. Bendell JC, Lenz HJ, Ryan T, El-Rayes BF, Marshall JL, Modiano MR, et al. Phase 1/2 study of KRN330, a fully human anti-A33 monoclonal antibody, plus irinotecan as second-line treatment for patients with metastatic colorectal cancer. Investig New Drugs. 2014;32(4):682–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, C., Singh, R.P., Dwiwedi, M.K., Amit, A. (2021). Immuno-modulating Mediators of Colon Cancer as Immuno-therapeutic: Mechanism and Potential. In: Nagaraju, G.P., Shukla, D., Vishvakarma, N.K. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63369-1_14

Download citation

Publish with us

Policies and ethics