Skip to main content

CXCL11 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1302))

Abstract

CXCL11 which can bind to two different chemokine receptors, CXCR3 and CXCR7, has found a prominent place in current tumor research. In this chapter, we mainly discuss the current evidence on the role of the immune response of CXCL11 in tumor microenvironment (TME). The diverse functions of CXCL11 include inhibiting angiogenesis, affecting the proliferation of different cell types, playing a role in fibroblast directed carcinoma invasion, increasing adhesion properties, suppressing M2 macrophage polarization, and facilitating the migration of certain immune cells. In addition, we discussed the application of CXCL11 as an adjuvant to various mainstream anti-cancer therapies and the future challenges in the application of CXCL11 targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK (2010) The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11:854–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Au KK, Le Page C, Ren R, Meunier L, Clément I, Tyrishkin K, Peterson N, Kendall-Dupont J, Childs T, Francis J-A et al (2016) STAT1-associated intratumoural TH1 immunity predicts chemotherapy resistance in high-grade serous ovarian cancer. J Pathol Clin Res 2:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8:1380–1389

    Article  CAS  PubMed  Google Scholar 

  4. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    Article  CAS  PubMed  Google Scholar 

  5. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold MET, Sunshine MJ, Littman DR, Kuo CJ et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cambien B, Karimdjee BF, Richard-Fiardo P, Bziouech H, Barthel R, Millet MA, Martini V, Birnbaum D, Scoazec JY, Abello J et al (2009) Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. Br J Cancer 100:1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campanella GS, Medoff BD, Manice LA, Colvin RA, Luster AD (2008) Development of a novel chemokine-mediated in vivo T cell recruitment assay. J Immunol Methods 331:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B (2016) Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into Tumors. J Immunol 197:2016–2026

    Article  CAS  PubMed  Google Scholar 

  9. Chu Y, Yang X, Xu W, Wang Y, Guo Q, Xiong S (2007) In situ expression of IFN-gamma-inducible T cell alpha chemoattractant in breast cancer mounts an enhanced specific anti-tumor immunity which leads to tumor regression. Cancer Immunol Immunother 56:1539–1549

    Article  CAS  PubMed  Google Scholar 

  10. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon–inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colvin RA, Campanella GSV, Sun J, Luster AD (2004) Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 279:30219–30227

    Article  CAS  PubMed  Google Scholar 

  12. Downs-Canner S, Magge D, Ravindranathan R, O’Malley M, Francis L, Liu Z, Guo ZS, Obermajer N, Bartlett D (2015) Complement inhibition: A novel form of immunotherapy for colon cancer. Ann Surg Oncol 23(2):655–662

    Article  PubMed  PubMed Central  Google Scholar 

  13. Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, Magge D, Kalinski P, Bartlett DL (2016) Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget 7:22174–22185

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao Q, Wang S, Chen X, Cheng S, Zhang Z, Li F, Huang L, Yang Y, Zhou B, Yue D, Wang D, Cao L, Maimela NR, Zhang B, Yu J, Wang L, Zhang Y (2019) Cancer-cell-secreted CXCL11 promoted CD8+ T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer 7:1–17

    Article  CAS  Google Scholar 

  15. Gao Q, Li F, Wang S, Shen Z, Cheng S, Ping Y, Qin G, Chen X, Yang L, Cao L et al A cycle involving HMGB1, IFN-γ and dendritic cells plays a putative role in anti-tumor immunity. Cell Immunol 2018(343):103850

    Google Scholar 

  16. Gröne H-J, Cohen CD, Gröne E, Schmidt C, Kretzler M, Schlöndorff D, Nelson PJ (2002) Spatial and temporally restricted expression of chemokines and chemokine receptors in the developing human kidney. J Am Soc Nephrol 13:957–967

    Article  PubMed  Google Scholar 

  17. Hannesdottir L, Tymoszuk P, Parajuli N, Wasmer MH, Philipp S, Daschil N, Datta S, Koller JB, Tripp CH, Stoitzner P et al (2013) Lapatinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur J Immunol 43:2718–2729

    Article  CAS  PubMed  Google Scholar 

  18. Korniejewska A, McKnight AJ, Johnson Z, Watson ML, Ward SG (2011) Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes. Immunology 132:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kyprianou N, Shaw AK, Pickup MW, Chytil A, Aakre M, Owens P, Moses HL, Novitskiy SV (2015) TGFβ Signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS One 10:e0117908

    Article  Google Scholar 

  20. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Ravindranathan R, Li J, Kalinski P, Guo ZS, Bartlett DL (2016) CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Onco Targets Ther 5:e1091554

    Google Scholar 

  22. Lo BK, Yu M, Zloty D, Cowan B, Shapiro J, McElwee KJ (2010) CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am J Pathol 176:2435–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Low QEH, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ (2001) Wound healing in MIP-1/ and MCP-1/ mice. Am J Pathol 159:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  CAS  PubMed  Google Scholar 

  25. Namkoong H, Song MY, Seo YB, Choi DH, Kim SW, Im SJ, Sung YC, Park Y (2014) Enhancement of antigen-specific CD8 T cell responses by co-delivery of Fc-fused CXCL11. Vaccine 32:1205–1212

    Article  CAS  PubMed  Google Scholar 

  26. Oghumu S, Varikuti S, Terrazas C, Kotov D, Nasser MW, Powell CA, Ganju RK, Satoskar AR (2014) CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 143:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohmori Y, Wyner L, Narumi S, Armstrong D, Stoler M, Hamilton TA (1993) Tumor necrosis factor-a induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. American Journal of Pathology 142:861–871

    CAS  Google Scholar 

  28. Paul J, Hensbergen PGJTBW, Schreurs MWJ, Scheper RJ, Willemze R, Tensen CP (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28:343–351

    Article  Google Scholar 

  29. Petrai I, Rombouts K, Lasagni L, Annunziato F, Cosmi L, Romanelli RG, Sagrinati C, Mazzinghi B, Pinzani M, Romagnani S et al (2008) Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol 40:1764–1774

    Article  CAS  PubMed  Google Scholar 

  30. Pockley G, Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes H-G, Rot A, Thelen M (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5:e9175

    Article  CAS  Google Scholar 

  31. Qian W, Dhir R, Wells A (2012) Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol Cancer 11:1–16

    CAS  Google Scholar 

  32. Rani MR, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM (1996) Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271:22878–22884

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez-Martín L, Sánchez-Mateos P, Cabañas C (2013) CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 19:12–22

    Article  PubMed  CAS  Google Scholar 

  34. Singh UP, Singh R, Singh S, Karls RK, Quinn FD, Taub DD, Lillard JW (2008) CXCL10+ T cells and NK cells assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes during mycobacteria-enhanced colitis. BMC Immunol 9:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, Briscoe DM, Datta D (2013) Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev 24:41–49

    Article  CAS  PubMed  Google Scholar 

  36. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, Roczniak S, Shanafelt AB (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    Article  CAS  PubMed  Google Scholar 

  37. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz H-J (2018) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treat Rev 63:40–47

    Article  CAS  PubMed  Google Scholar 

  38. Vieyra-Garcia P, Crouch JD, O’Malley JT, Seger EW, Yang CH, Teague JE, Vromans AM, Gehad A, Win TS, Yu Z et al (2019) Benign T cells drive clinical skin inflammation in cutaneous T cell lymphoma. JCI Insight 4

    Google Scholar 

  39. Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA (1998) Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 273:18288–18291

    Article  CAS  PubMed  Google Scholar 

  40. Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tuting T (2005) Type I interferon-associated recruitment of cytotoxic lymphocytes: a common mechanism in regressive melanocytic lesions. Am J Clin Pathol 124:37–48

    Article  CAS  PubMed  Google Scholar 

  41. Xanthou G, Duchesnes CE, Williams TJ, Pease JE (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33:2241–2250

    Article  CAS  PubMed  Google Scholar 

  42. Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T, Yang P (2011) Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol 89:85–91

    Article  CAS  PubMed  Google Scholar 

  43. Yoshie O, Imai T, Nomiyama H (2001) Chemokines in immunity. Adv Immunol 78:57–110

    Article  CAS  PubMed  Google Scholar 

  44. Yoshihiro Ohmori RDS, Hamilton TA (1997) Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappa B. J Biol Chem 272:14899–14907

    Article  Google Scholar 

  45. Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M, Zhang Z (2019) CXCL11 promotes self-renewal and tumorigenicity of α2δ1+ liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett 449:163–171

    Article  CAS  PubMed  Google Scholar 

  46. Zohar Y, Wildbaum G, Novak R, Salzman AL, Thelen M, Alon R, Barsheshet Y, Karp CL, Karin N (2018) CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J Clin Invest 128:1200–1201

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Q., Zhang, Y. (2021). CXCL11 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1302. Springer, Cham. https://doi.org/10.1007/978-3-030-62658-7_4

Download citation

Publish with us

Policies and ethics