Skip to main content

Advertisement

Log in

In situ expression of IFN-γ-inducible T cell α chemoattractant in breast cancer mounts an enhanced specific anti-tumor immunity which leads to tumor regression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Increased evidence indicates that chemokines are involved in tumor growth. ITAC, a key member of chemokines, possesses the ability to recruit T cells and enhance immune responses. Therefore, ITAC might contribute to antitumor immunity. In this study, we evaluated the relationship between the expression of ITAC and human breast cancer advancement. We further investigated whether forced expression of ITAC in tumor sites could mediate enhanced antitumor immunity in a murine breast cancer model. Results showed that ITAC expression level was down-regulated in 31 breast cancer specimens compared to normal mammary tissues, and associated negatively with the stages of breast cancer. Contrarily, forced expression of ITAC in murine 4T1 tumor cells resulted in tumor regression after initial growth upon injection into naïve Balb/c mice. More lymphocytes were recruited to the site of tumor inoculated by 4T1-ITAC and more than 80% of these T cells expressed the ITAC receptor, CXCR3. ITAC-recruited TILs exhibited 4T1-specific proliferation and cytotoxicity, and an increased IFN-γ but decreased IL-4 production. Importantly, forced expression of ITAC in 4T1 tumor nodules inhibited tumor growth. These findings demonstrated that the decreased expression of ITAC is associated with the advancement of breast cancer in patients. Forced expression of ITAC in tumor site not only induces increased T cell-recruitment and elicits a specific antitumor immunity, but also mediates regression of established 4T1 tumors, indicating the potential application of ITAC-expressing tumor cells in cancer immunotherapy and vaccine designing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ITAC:

IFN-γ-inducible T cell α chemoattractant

CXCR3:

Cys-X-Cys receptor 3

TIL:

Tumor infiltrating lymphocyte

CI:

Chemotaxis index

MMC:

Mitomycin C

CFSE:

5- and 6-carboxyfluorescein diacetate succinimydyl ester

7-AAD:

7-Amino actinomycin D

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Bondy ML, Newman LA (2006) Assessing breast cancer risk: evolution of the Gail Model. J Natl Cancer Inst 98:1172–1173

    Article  PubMed  Google Scholar 

  2. Adams SA, Matthews CE, Hebert JR, Moore CG, Cunningham JE, Shu XO, Fulton J, Gao Y, Zheng W (2006c) Association of physical activity with hormone receptor status: the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 15:1170–1178

    Article  PubMed  CAS  Google Scholar 

  3. Schaefer NG, Pestalozzi BC, Knuth A, Renner C (2006) Potential use of humanized antibodies in the treatment of breast cancer. Expert Rev Anticancer Ther 6:1065–1074

    Article  PubMed  CAS  Google Scholar 

  4. Wang W, Epler J, Salazar LG, Riddell SR (2006) Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1. Cancer Res 66:6826–6833

    Article  PubMed  CAS  Google Scholar 

  5. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    Article  PubMed  CAS  Google Scholar 

  6. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2000) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  Google Scholar 

  7. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  8. Rollins BJ (1997) Chemokines. Blood 90:909–928

    PubMed  CAS  Google Scholar 

  9. Widney DP, Xia YR, Lusis AJ, Smith JB (2000) The murine chemokine CXCL11 (IFN-inducible T cell alpha chemoattractant) is an IFN-gamma- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. J Immunol 164:6322–6331

    PubMed  CAS  Google Scholar 

  10. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969

    Article  PubMed  CAS  Google Scholar 

  11. Xanthou G, Williams TJ, Pease JE (2003) Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33:2927–2936

    Article  PubMed  CAS  Google Scholar 

  12. Xie JH, Nomura N, Lu M, Chen SL, Koch GE, Weng Y, Rosa R, Di Salvo J, Mudgett J, Peterson LB, Wicker LS, DeMartino JA (2003) Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol 73:771–780

    Article  PubMed  CAS  Google Scholar 

  13. McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, Gladue RP, Neote KS, Willenborg DO (2004) Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Lab Invest 84:1418–1429

    Article  PubMed  CAS  Google Scholar 

  14. Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R, Tensen CP (2001) Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol 194:398–405

    Article  PubMed  CAS  Google Scholar 

  15. Hensbergen PJ, Wijnands PG, Schreurs MW, Scheper RJ, Willemze R, Tensen CP (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28:343–351

    Article  PubMed  CAS  Google Scholar 

  16. Dumoulin FL, Nischalke HD, Leifeld L, von dem Bussche A, Rockstroh JK, Sauerbruch T, Spengler U (2000) Semi-quantification of human C–C chemokine mRNAs with reverse transcription/real-time PCR using multi-specific standards. J Immunol Methods 241:109–119

    Article  PubMed  CAS  Google Scholar 

  17. Martinelli R, Sabroe I, LaRosa G, Williams TJ, Pease JE (2001) The CC chemokine eotaxin (CCL11) is a partial agonist of CC chemokine receptor 2b. J Biol Chem 276:42957–42964

    Article  PubMed  CAS  Google Scholar 

  18. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML (2001) A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177–187

    Article  PubMed  CAS  Google Scholar 

  19. Yu P, Spiotto MT, Lee Y, Schreiber H, Fu YX (2003) Complementary role of CD4+ T cells and secondary lymphoid tissues for cross-presentation of tumor antigen to CD8+ T cells. J Exp Med 197:985–995

    Article  PubMed  CAS  Google Scholar 

  20. Hu HM, Urba WJ, Fox BA (1998) Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol 161:3033–3041

    PubMed  CAS  Google Scholar 

  21. Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel RM (1999) Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 96:2233–2238

    Article  PubMed  CAS  Google Scholar 

  22. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  23. Huang H, Xiang J (2004) Synergistic effect of lymphotactin and interferon gamma-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Int J Cancer 109:817–825

    Article  PubMed  CAS  Google Scholar 

  24. Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, Hipkin RW (2001) Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol Pharmacol 59:707–715

    PubMed  CAS  Google Scholar 

  25. Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227–238

    Article  PubMed  CAS  Google Scholar 

  26. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  27. Chen L (1998) Immunological ignorance of silent antigens as an explanation of tumor evasion. Immunol Today 19:27–30

    Article  PubMed  CAS  Google Scholar 

  28. Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB, Butcher EC (2005) Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 6:889–894

    Article  PubMed  CAS  Google Scholar 

  29. Shannon KB, Seddon YT, Andrew DL (2005) Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6:895–901

    Article  CAS  Google Scholar 

  30. Chu Y, Wang LX, Yang G, Ross HJ, Urba WJ, Prell R, Jooss K, Xiong S, Hu HM (2006) Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma. J Immunother 29:367–380

    Article  PubMed  CAS  Google Scholar 

  31. Morris E, Hart D, Gao L, Tsallios A, Xue SA, Stauss H (2006) Generation of tumor-specific T-cell therapies. Blood Rev 20:61–69

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Subjeck J, Yang G, Repasky E, Wang XY (2006) Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Vaccine 24:5360–5370

    Article  PubMed  CAS  Google Scholar 

  33. Liu Y, Huang H, Saxena A, Xiang J (2002) Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Ther 9:533–542

    Article  PubMed  CAS  Google Scholar 

  34. Pilon-Thomas S, Verhaegen M, Kuhn L, Riker A, Mule JJ (2006) Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells. Cancer Immunol Immunother 55:1238–1246

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hong-Ming Hu (EACRI, Portland, OR, USA) for his helpful suggestions, Yi Lin (Department of Immunology, Fudan University, Shanghai, China) for her assistance in the paper, Prof. Chong-Xian Pan (Department of Internal Medicine, UC Davis Cancer Center, USA) and Jin-Di Wen (Shanghai Medical College, Fudan University, Shanghai, China) for proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Xiong.

Additional information

Grant Support: The program of Science and Technology Commission of Shanghai Municipality (STCSM) (04XD14003, 04DZ14902, 045407038), the National Natural Science Foundation of China (NSFC) (30571713) and the program for Outstanding Medical Academic Leader.

Yiwei Chu and Xiuli Yang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y., Yang, X., Xu, W. et al. In situ expression of IFN-γ-inducible T cell α chemoattractant in breast cancer mounts an enhanced specific anti-tumor immunity which leads to tumor regression. Cancer Immunol Immunother 56, 1539–1549 (2007). https://doi.org/10.1007/s00262-007-0296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0296-1

Keywords

Navigation