Skip to main content

Abstract

Lake charr, Salvelinus namaycush, ecological and phenotypic diversity within and among populations was reviewed from empirical and conceptual perspectives. The species is generally the top predator in oligotrophic lakes, with diversity either constrained, or promoted by, habitat depth and complexity, available forage species, and presence or absence of competitors. Diversity in smaller lakes is generally limited to forage-based life-history variation. Large, complex lakes provide a greater array of available resources, thereby enabling diversification to capitalize on increased ecological opportunities. Morphological and ecological differentiation is common between deep-water (humper-like or siscowet-like) and shallow-water (lean-like) ecotypes, consistent with the hypothesis that foraging opportunities and selection pressures vary with lake depth. Sympatric lake charr assemblages of deep- and shallow-water ecotypes in multiple lakes (Great Slave Lake, Lake Superior, Lake Mistassini, and Rush Lake) likely arose independently in response to parallel ecological opportunities. Diversification also occurs in small lakes and within shallow-water habitats. Research is needed on (1) how habitat size, complexity, and trophic coupling affect diversity and adaptive capacity, (2) the extent of heritable versus plastic responses of lake charr to ecological opportunities and selective pressures, and (3) the ability of lake charr populations and ecotypes to respond to stressors in ecological time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Glossary is a synthesis of the following sources: Skulason and Smith (1995), Allendorf et al. (2001), Glossary (2001), Malats and Calafell (2003), Kuparinen and Merilä (2007), Metcalf and Pavard (2007), Bolnick et al. (2011), Violle et al. (2012); Richardson et al. (2014).

References

  • Adams CE, Huntingford FA (2002) The functional significance of inherited differences in feeding morphology in a sympatric polymorphic population of Arctic charr. Evol Ecol 16(1):15–25

    Article  Google Scholar 

  • Adams CE, Huntingford FA (2005) Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch, Scotland. J Fish Biol 60(3):515–520. https://doi.org/10.1111/j.1095-8649.2002.tb01680.x

    Article  Google Scholar 

  • Adams CE, Woltering C, Alexander G (2003) Epigenetic regulation of trophic morphology through feeding behaviour in Arctic charr, Salvelinus alpinus. Biol J Linn Soc 78(1):43–49. https://doi.org/10.1046/j.1095-8312.2003.00126.x

    Article  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16(11):613–622. https://doi.org/10.1016/S0169-5347(01)02290-X

    Article  Google Scholar 

  • Andersen KH, Farnsworth KD, Pedersen M, Gislason H, Beyer JE (2009) How community ecology links natural mortality, growth, and production of fish populations. ICES J Mar Sci 66(9):1978–1984. https://doi.org/10.1093/icesjms/fsp161

    Article  Google Scholar 

  • Andersson J, Bystrom P, Claessen D, Persson LDR, A.M. (2007) Stabilization of population fluctuations due to cannibalism promotes resource polymorphism in fish. Am Nat 169(6):820–829

    Article  PubMed  Google Scholar 

  • Araújo MS, Costa-Pereira R (2013) Latitudinal gradients in intraspecific ecological diversity. Biol Lett 9(6):20130778

    Article  PubMed  PubMed Central  Google Scholar 

  • Baillie SM, Muir AM, Hansen MJ, Krueger CC, Bentzen P (2016a) Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush. BMC Evol Biol 16(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  • Baillie SM, Muir AM, Scribner K, Bentzen P, Krueger CC (2016b) Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013. J Great Lakes Res 42(2):204–216. https://doi.org/10.1016/j.jglr.2016.02.001

    Article  Google Scholar 

  • Behnke RJ (1972) The systematics of salmonid fishes of recently glaciated lakes. J Fish Res Board Can 29:639–671

    Article  Google Scholar 

  • Bernatchez S, Laporte M, Perrier C, Sirois P, Bernatchez L (2016) Investigating genomic and phenotypic parallelism between piscivorous and planktivorous lake trout (Salvelinus namaycush) ecotypes by means of RADseq and morphometrics analyses. Mol Ecol 25(19):4773–4792

    Article  CAS  PubMed  Google Scholar 

  • Blake RW (2004) Fish functional design and swimming performance. J Fish Biol 65(5):1193–1222

    Article  Google Scholar 

  • Bolnick DI, Paull JS (2009) Morphological and dietary differences between individuals are weakly but positively correlated within a population of threespine stickleback. Evol Ecol Res 11(8):1217–1233

    Google Scholar 

  • Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83(10):2936–2941. https://doi.org/10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161(1):1–28

    Article  PubMed  Google Scholar 

  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc Lond B Biol Sci rspb20100018

    Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VH, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond CE (1996) Biology of fishes, vol 1. Saunders College Publishing, Forth Worth

    Google Scholar 

  • Brodersen J, Post DM, Seehausen O (2018) Upward Adaptive Radiation Cascades: Predator Diversification Induced by Prey Diversification. Trends Ecol Evol 33(1):59–70. https://doi.org/10.1016/j.tree.2017.09.016

    Article  PubMed  Google Scholar 

  • Bronte CR (1993) Evidence of spring spawning lake trout in Lake Superior. J Great Lakes Res 19:625–629

    Article  Google Scholar 

  • Bronte CR, Moore SA (2007) Morphological variation of siscowet lake trout in Lake Superior. Trans Am Fish Soc 136(2):509–517. https://doi.org/10.1577/t06-098.1

    Article  Google Scholar 

  • Bronte CR, Sitar SP (2008) Harvest and relative abundance of siscowet lake trout in Michigan waters of Lake Superior, 1929-1961. Trans Am Fish Soc 137:916–926

    Article  Google Scholar 

  • Bronte CR, Ebener MP, Schreiner DR, DeVault DS, Petzold MM, Jensen DA, Richards C, Lozano SJ (2003) Fish community change in Lake Superior, 1970-2000. Can J Fish Aquat Sci 60(12):1552–1574

    Article  Google Scholar 

  • Bronte CR, Hoff MH, Gorman OT, Thogmartin WE, Schneeberger PJ, Todd TN (2010) Decline of the shortjaw cisco in Lake Superior: the role of overfishing and risk of extinction. Trans Am Fish Soc 139:735–748

    Article  Google Scholar 

  • Campana SE, Casselman JM, Jones CM, Black G, Barker O, Evans M, Guzzo MM, Kilada R, Muir AM, Perry R (2020) Arctic freshwater fish productivity and colonization increase with climate warming. Nat Clim Chang. https://doi.org/10.1038/s41558-020-0744-x

  • Campbell CS, Adams CE, Bean CW, Parsons KJ (2017) Conservation evo-devo: preserving biodiversity by understanding its origins. Trends Ecol Evol 32(10):746–759. https://doi.org/10.1016/j.tree.2017.07.002

    Article  PubMed  Google Scholar 

  • Chapman B, Hulthén K, Brodersen J, Nilsson PA, Skov C, Hansson LA, Brönmark C (2012) Partial migration in fishes: causes and consequences. J Fish Biol 81(2):456–478

    Article  CAS  PubMed  Google Scholar 

  • Chavarie L, Dempson JB, Schwarz C, Reist J, Power G, Power M (2010) Latitudinal variation in growth among Arctic charr in eastern North America: evidence for countergradient variation? Hydrobiologia 650(1):161–177

    Article  Google Scholar 

  • Chavarie L, Howland KL, Tonn WM (2013) Sympatric polymorphism in lake trout: the coexistence of multiple shallow-water morphotypes in Great Bear Lake. Trans Am Fish Soc 142(3):814–823. https://doi.org/10.1080/00028487.2013.763855

    Article  Google Scholar 

  • Chavarie L, Howland K, Harris L, Tonn W (2015) Polymorphism in lake trout in Great Bear Lake: intra-lake morphological diversification at two spatial scales. Biol J Linn Soc 114(1):109–125

    Article  Google Scholar 

  • Chavarie L, Howland K, Venturelli P, Kissinger BC, Tallman R, Tonn W (2016a) Life-history variation among four shallow-water morphotypes of lake trout from Great Bear Lake. Canada J Great Lakes Res. https://doi.org/10.1016/j.jglr.2015.1007.1006

  • Chavarie L, Harford WJ, Howland KL, Fitzsimons J, Muir AM, Krueger CC, Tonn WM (2016b) Multiple generalist morphs of Lake Trout: avoiding constraints on the evolution of intraspecific divergence? Ecol Evol 6:7727–7741

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavarie L, Howland K, Gallagher C, Tonn W (2016c) Fatty acid signatures and stomach contents of four sympatric Lake Trout: assessment of trophic patterns among morphotypes in Great Bear Lake. Ecol Freshw Fish 25:109–124. https://doi.org/10.1111/eff.12195

    Article  Google Scholar 

  • Chavarie L, Muir AM, Zimmerman MS, Baillie SM, Hansen MJ, Nate NA, Yule DL, Middel T, Bentzen P, Krueger CC (2016d) Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biol J Linn Soc. https://doi.org/10.1111/bij.12913

  • Chavarie L, Howland KL, Harris LN, Hansen MJ, Harford WJ, Gallagher CP, Baillie SM, Malley B, Tonn WM, Muir AM, Krueger CC (2018) From top to bottom: do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada? PLoS One 13(3):e0193925. https://doi.org/10.1371/journal.pone.0193925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavarie L, Hoffman J, Gallagher C, Hansen MJ, Muir AM, Tonn W, Krueger CC, Loseto LL, Swanson H (2020a) Dietary vs non-dietary fatty acid profiles of lake trout morphs from Lake Superior and Great Bear Lake: are fish what they eat? Can J Fish Aquat Sci. https://www.nrcresearchpress.com/doi/10.1139/cjfas-2019-0343#.Xor2JohKiUk

  • Chavarie L, Howland K, Harris LN, Gallagher C, Hansen MJ, Muir AM, Tonn W, Krueger CC (2020b) Among individual diet variation within a lake trout ecotype: lack of stability of niche use. Ecol Evol. ECE-2020-07-01150. (Accepted)

    Google Scholar 

  • Chavarie L, Voelker S, Hansen MJ, Bronte CC, Muir M, Krueger CC (2020c) Temporal instability of lake charr phenotypes: synchronicity of growth rates and morphology linked to environmental variables? bioRxiv. https://doi.org/10.1101/2020.08.13.249557

  • Collar DC, O'Meara BC, Wainwright PC, Near TJ (2009) Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63(6):1557–1573

    Article  PubMed  Google Scholar 

  • Costa GC, Mesquita DO, Colli GR, Vitt LJ, Associate Editor: Daniel R, Editor: Monica G (2008) Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am Nat 172(6):868–877. doi:https://doi.org/10.1086/592998

  • Davies TJ, Urban MC, Rayfield B, Cadotte MW, Peres-Neto PR (2016) Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97(9):2212–2222. https://doi.org/10.1002/ecy.1507

    Article  PubMed  Google Scholar 

  • Dermond P, Thomas SM, Brodersen J (2017) Environmental stability increases relative individual specialisation across populations of an aquatic top predator. Oikos. https://doi.org/10.1111/oik.04578

  • deVries MS (2017) The role of feeding morphology and competition in governing the diet breadth of sympatric stomatopod crustaceans. Biol Lett 13(4):20170055. https://doi.org/10.1098/rsbl.2017.0055

    Article  PubMed  PubMed Central  Google Scholar 

  • DeWitt TJ (1998) Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. J Evol Biol 11(4):465–480. https://doi.org/10.1046/j.1420-9101.1998.11040465.x

    Article  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357. https://doi.org/10.1038/22521

    Article  CAS  PubMed  Google Scholar 

  • Dolson R, McCann K, Rooney N, Ridgway M (2009) Lake morphometry predicts the degree of habitat coupling by a mobile predator. Oikos 118(8):1230–1238. https://doi.org/10.1111/j.1600-0706.2009.17351.x

    Article  Google Scholar 

  • Elmer KR (2016) Genomic tools for new insights to variation, adaptation, and evolution in the salmonid fishes: a perspective for charr. Hydrobiologia. https://doi.org/10.1007/s10750-10015-12614-10755

  • Endler JA (1978) A predator’s view of animal color patterns. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary biology, vol II. Plenum, New York

    Google Scholar 

  • Eschmeyer PH, Phillips AM Jr (1965) Fat content of the flesh of siscowets and lake trout from Lake Superior. Trans Am Fish Soc 94:62–74

    Article  Google Scholar 

  • Eshenroder RL (2008) Differentiation of deep-water lake charr Salvelinus namaycush in North American lakes. Environ Biol Fish 83:77–90

    Article  Google Scholar 

  • Eshenroder RL, Sideleva VG, Todd TN (1999) Functional convergence among pelagic sculpins of Lake Baikal and deepwater ciscoes of the Great Lakes. J Great Lakes Res 25:847–855

    Article  CAS  Google Scholar 

  • Etheridge EC, Adams CE, Bean CW, Durie NC, Gowans ARD, Harrod C, Lyle AA, Maitland PS, Winfield IJ (2012) Are phenotypic traits useful for differentiating among a priori Coregonus taxa? J Fish Biol 80(2):387–407. https://doi.org/10.1111/j.1095-8649.2011.03189.x

    Article  CAS  PubMed  Google Scholar 

  • Faria R, Renaut S, Galindo J, Pinho C, Melo-Ferreira J, Melo M, Jones F, Salzburger W, Schluter D, Butlin R (2014) Advances in ecological speciation: an integrative approach. Mol Ecol 23(3):513–521. https://doi.org/10.1111/mec.12616

    Article  PubMed  Google Scholar 

  • Figgener C, Bernardo J, Plotkin PT (2019) Beyond trophic morphology: stable isotopes reveal ubiquitous versatility in marine turtle trophic ecology. Biol Rev. https://doi.org/10.1111/brv.12543

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Garduño-Paz MV, Adams CE (2010) Discrete prey availability promotes foraging segregation and early divergence in Arctic charr, Salvelinus alpinus. Hydrobiologia 650(1):15–26. https://doi.org/10.1007/s10750-009-0055-8

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x

    Article  Google Scholar 

  • Gillespie GJ, Fox MG (2003) Morphological and life-history differentiation between littoral and pelagic forms of pumpkinseed. J Fish Biol 62(5):1099–1115. https://doi.org/10.1046/j.1095-8649.2003.00100.x

    Article  Google Scholar 

  • Gíslason D, Ferguson MM, Skúlason S, Snorrason SS (1999) Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 56(12):2229–2234. https://doi.org/10.1139/f99-245

    Article  Google Scholar 

  • Glossary S (2001) Speciation glossary. Trends Ecol Evol 16(7):412–413. https://doi.org/10.1016/S0169-5347(01)02249-2

    Article  Google Scholar 

  • Goetz F, Rosauer D, Sitar SP, Goetz G, Simchick C, Roberts S, Johnson R, Murphy C, Bronte CR, Mackenzie S (2010) A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Mol Ecol 19(Suppl. 1):176–196

    Article  PubMed  Google Scholar 

  • Goetz F, Sitar S, Rosauer D, Swanson P, Bronte CR, Dickey J, Simchick C (2011) The reproductive biology of siscowet and lean lake trout in southern Lake Superior. Trans Am Fish Soc 140:1472–1491. https://doi.org/10.1080/00028487.2011.630276

    Article  Google Scholar 

  • Goetz F, Jasonowicz A, Johnson R, Biga P, Fischer G, Sitar S (2013) Physiological differences between lean and siscowet lake trout morphotypes: are these metabolotypes? Can J Fish Aquat Sci 71(3):427–435. https://doi.org/10.1139/cjfas-2013-0463

    Article  CAS  Google Scholar 

  • Goetz F, Sitar S, Jasonowicz A, Seider M (2017) Reproduction of Lake Trout Morphotypes at Isle Royale in Northern Lake Superior. Trans Am Fish Soc 146(2):268–282. https://doi.org/10.1080/00028487.2016.1259660

    Article  Google Scholar 

  • Goetz R, Marsden JE, Richter C, Riley SC, Evans A, Tillitt D, Sitar S, Krueger CC (2021) Reproductive ecology. In: Muir AM, Hansen MJ, Riley SC, Krueger CC (eds) The Lake Charr Salvelinus namaycush: biology, ecology, distribution, and management. Springer, Heidelberg

    Google Scholar 

  • Goodier JL (1981) Native lake trout (Salvelinus namaycush) stocks in the Canadian waters of Lake Superior prior to 1955. Can J Fish Aquat Sci 38:1724–1737

    Article  Google Scholar 

  • Gross MR (1987) Evolution of diadromy in fishes. Am Fish Soc Symp 1:14–25

    Google Scholar 

  • Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proc R Soc Lond Ser B Biol Sci 270(1513):425–433. https://doi.org/10.1098/rspb.2002.2250

    Article  CAS  Google Scholar 

  • Guinand B, Page KS, Burnham-Curtis MK, Scribner KT (2012) Genetic signatures of historical bottlenecks in sympatric lake trout (Salvelinus namaycush) morphotypes in Lake Superior. Environ Biol Fishes 95(3):323–334. https://doi.org/10.1007/s10641-012-0005-6

    Article  Google Scholar 

  • Gunn J, Pitblado R (2004) Lake trout, the Boreal Shield, and the factors that shape lake trout ecosystems. In: Gunn JR, Steedman RJ, Ryder RA (eds) Boreal shield watersheds: lake trout ecosystems in a changing environment. CRC Press, New York, pp 3–19

    Google Scholar 

  • Guzzo MM, Blanchfield PJ, Rennie MD (2017) Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc Natl Acad Sci U S A 114(37):9912–9917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MJ, Nate NA, Krueger CC, Zimmerman MS, Kruckman HG, Taylor WW (2012) Age, growth, survival, and maturity of lake trout morphotypes in Lake Mistassini, Quebec. Trans Am Entomol Soc (Phila) 141(6):1492–1503

    Google Scholar 

  • Hansen MJ, Nate NA, Chavarie L, Muir AM, Zimmerman MS, Krueger CC (2016a) Life history differences between fat and lean morphs of lake charr (Salvelinus namaycush) in Great Slave Lake, Northwest Territories, Canada, Hydrobiologia.

    Google Scholar 

  • Hansen MJ, Nate NA, Muir AM, Bronte CR, Zimmerman MS, Krueger CC (2016b) Life history variation among four lake trout morphs at Isle Royale, Lake Superior. J Great Lakes Res 42(2):421–432

    Article  Google Scholar 

  • Hansen MJ, Guy CS, Bronte CR, Nate NA (2021) Life history and population dynamics. In: Muir AM, Hansen MJ, Riley SC, Krueger CC (eds) The Lake Charr Salvelinus namaycush: biology, ecology, distribution, and management. Springer, Heidelberg

    Google Scholar 

  • Harris LN, Chavarie L, Bajno R, Howland KL, Wiley SH, Tonn WM, Taylor EB (2015) Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada’s Great Bear Lake. Heredity 114(1):94–106. https://doi.org/10.1038/hdy.2014.74

    Article  CAS  PubMed  Google Scholar 

  • Harrod C, Mallela J, Kahilainen KK (2010) Phenotype-environment correlations in a putative whitefish adaptive radiation. J Anim Ecol 79:1057–1068

    Article  PubMed  Google Scholar 

  • Harvey CJ, Kitchell JF (2000) A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. Can J Fish Aquat Sci 57:1395–1403

    Article  CAS  Google Scholar 

  • Harvey CJ, Schram ST, Kitchell JF (2003) Trophic relationships among lean and siscowet lake trout in Lake Superior. Trans Am Fish Soc 132(2):219–228

    Article  Google Scholar 

  • Henderson BA, Anderson DM (2002) Phenotypic differences in buoyancy and energetics of lean and siscowet lake charr in Lake Superior. Environ Biol Fishes 64:203–209

    Article  Google Scholar 

  • Hendry AP, Bohlin T, Jonsson B, Berg OK (2004) To sea or not to sea. Evolution illuminated. Oxford University Press, New York, pp 92–125

    Google Scholar 

  • Hendry AP, Bolnick DI, Berner D, Peichel CL (2009) Along the speciation continuum in stickleback. J Fish Biol 75:2000–2036. https://doi.org/10.1111/j.1095-8649.2009.02419.x

    Article  CAS  PubMed  Google Scholar 

  • Hendry AP, Hendry AS, Hendry CA (2013) Hendry Vineyard stickleback: testing for contemporary lake–stream divergence. Evol Ecol Res 15(3):343–359

    Google Scholar 

  • Hindar K, Jonsson B (1993) Ecological polymorphism in Arctic charr. Biol J Linn Soc 48(1):63–74. https://doi.org/10.1111/j.1095-8312.1993.tb00877.x

    Article  Google Scholar 

  • Hoffmann JM (2017) Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout in Lake Superior. University of Waterloo

    Google Scholar 

  • Hooker OE, Barry J, Van Leeuwen TE, Lyle A, Newton J, Cunningham P, Adams CE (2016) Morphological, ecological and behavioural differentiation of sympatric profundal and pelagic Arctic charr (Salvelinus alpinus) in Loch Dughaill Scotland. Hydrobiologia. https://doi.org/10.1007/s10750-015-2599-0

  • Houde ALS, Wilson CC, Pitcher TE (2016) Genetic architecture and maternal contributions of early-life survival in lake trout Salvelinus namaycush. J Fish Biol 88(5):2088–2094. https://doi.org/10.1111/jfb.12965

    Article  CAS  PubMed  Google Scholar 

  • Hrabik TR, Jensen OP, Martell SJD, Walters CJ, Kitchell JF (2006) Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying perdation risk. Can J Fish Aquat Sci 63:2286–2295

    Article  Google Scholar 

  • Hudson AG, Vonlanthen P, Seehausen O (2011) Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc R Soc B Biol Sci 278(1702):58–66. https://doi.org/10.1098/rspb.2010.0925

    Article  Google Scholar 

  • Jacobs A, Carruthers M, Eckmann R, Yohannes E, Adams CE, Behrmann-Godel J, Elmer KR (2019) Rapid niche expansion by selection on functional genomic variation after ecosystem recovery. Nat Ecol Evol 3(1):77–86. https://doi.org/10.1038/s41559-018-0742-9

    Article  PubMed  Google Scholar 

  • Janhunen M, Peuhkuri N, Piironen J (2009) Morphological variability among three geographically distinct Arctic charr (Salvelinus alpinus L.) populations reared in a common hatchery environment. Ecol Freshw Fish 18(1):106–116. https://doi.org/10.1111/j.1600-0633.2008.00329.x

    Article  Google Scholar 

  • Johnson L (1975) Distribution of fish species in Great Bear Lake, Northwest Territories, with reference to zooplankton, benthic invertebrates, and environmental conditions. J Fish Res Board Can 32:1989–2004

    Article  Google Scholar 

  • Johnson L (1976) The Great Bear Lake: its place in history. Arctic 28:230–244

    Google Scholar 

  • Johnson L (1980) The arctic charr, Salvelinus alpinus. Charrs: Salmonid fishes of the genus Salvelinus. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Jones NE, Parna M, Parna S, Chong S (2018) Evidence of lake trout (Salvelinus namaycush) spawning and spawning habitat use in the Dog River, Lake Superior. J Great Lakes Res 44(5):1117–1122. https://doi.org/10.1016/j.jglr.2018.07.017

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2014) Early environment influences later performance in fishes. J Fish Biol 85(2):151–188

    Article  CAS  PubMed  Google Scholar 

  • Kahilainen K, Lehtonen H, Könönen K (2003) Consequence of habitat segregation to growth rate of two sparsely rakered whitefish (Coregonus lavaretus (L.)) forms in a subarctic lake. Ecol Freshw Fish 12(4):275–285. https://doi.org/10.1046/j.1600-0633.2003.00029.x

    Article  Google Scholar 

  • Kahilainen KK, Thomas SM, Nystedt EKM, Keva O, Malinen T, Hayden B (2017) Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes. Sci Total Environ 599–600:1768–1778. https://doi.org/10.1016/j.scitotenv.2017.05.099

    Article  CAS  PubMed  Google Scholar 

  • Khan NY, Qadri SU (1970) Morphological differences in Lake Superior lake char. J Fish Res Board Can 27:161–167

    Article  Google Scholar 

  • Kissinger BC, Gantner N, Anderson WG, Gillis DM, Halden NM, Harwood LA, Reist JD (2016) Brackish-water residency and semi-anadromy in Arctic lake trout (Salvelinus namaycush) inferred from otolith microchemistry. J Great Lakes Res 42(2):267–275. https://doi.org/10.1016/j.jglr.2015.05.016

    Article  CAS  Google Scholar 

  • Kissinger BC, Bystriansky J, Czehryn N, Enders EC, Treberg J, Reist JD, Whitmore E, Gary Anderson W (2017a) Environment-phenotype interactions: influences of brackish-water rearing on lake trout (Salvelinus namaycush) physiology. Environ Biol Fishes 100(7):797–814. https://doi.org/10.1007/s10641-017-0607-0

    Article  Google Scholar 

  • Kissinger BC, Harris LN, Swainson D, Anderson G, Docker MF, Reist JD (2017b) Fine-scale population structure in lake trout (Salvelinus namaycush) influenced by life history variation in the Husky Lakes drainage basin, NT Canada. Can J Fish Aquat Sci. https://doi.org/10.1139/cjfas-2016-0524

  • Klemetsen A (2013) The most variable vertebrate on Earth. J Ichthyol 53(10):781–791. https://doi.org/10.1134/S0032945213100044

    Article  Google Scholar 

  • Klemetsen A, Amundsen P, Knudsen R, Hermansen B (1997) A profundal, winter-spawning morph of Arctic charr Salvelinus alpinus (L.) in lake Fjellfrøsvatn, northern Norway. Nord J Freshw Res 73:13–23

    Google Scholar 

  • Knudsen R, Primicerio R, Amundsen P-A, Klemetsen A (2010) Temporal stability of individual feeding specialization may promote speciation. J Anim Ecol 79(1):161–168. https://doi.org/10.1111/j.1365-2656.2009.01625.x

    Article  PubMed  Google Scholar 

  • Knudsen R, Siwertsson A, Adams CE, Garduño-Paz M, Newton J, Amundsen P-A (2011) Temporal stability of niche use exposes sympatric Arctic charr to alternative selection pressures. Evol Ecol 25(3):589–604. https://doi.org/10.1007/s10682-010-9451-9

    Article  Google Scholar 

  • Krueger CC, Ihssen PE (1995) Review of Genetics of Lake Trout in the Great Lakes: History, Molecular Genetics, Physiology, Strain Comparisons, and Restoration Management. J Great Lakes Res 21(Suppl 1):348–363. https://doi.org/10.1016/S0380-1330(95)71109-1

    Article  Google Scholar 

  • Krueger CC, Marsden JE, Kincaid HL, May B (1989) Genetic differentiation among lake trout strains stocked into Lake Ontario. Trans Am Fish Soc 118(3):317–330

    Article  Google Scholar 

  • Krueger CC, Jones ML, Taylor WW (1995) Restoration of lake trout in the Great Lakes: challenges and strategies for future management. J Great Lakes Res 21(Suppl 1):547–558

    Article  Google Scholar 

  • Kuparinen A, Merilä J (2007) Detecting and managing fisheries-induced evolution. Trends Ecol Evol 22(12):652–659. https://doi.org/10.1016/j.tree.2007.08.011

    Article  PubMed  Google Scholar 

  • Latta RG (2008) Conservation genetics as applied evolution: from genetic pattern to evolutionary process. Evol Appl 1(1):84–94. https://doi.org/10.1111/j.1752-4571.2007.00008.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Levis NA, Martin RA, O’Donnell KA, Pfennig DW (2017) Intraspecific adaptive radiation: competition, ecological opportunity, and phenotypic diversification within species. Evolution 71(10):2496–2509. https://doi.org/10.1111/evo.13313

    Article  PubMed  Google Scholar 

  • Loftus KH (1958) Studies on river-spawning populations of lake trout in eastern Lake Superior. Trans Am Fish Soc 87:259–277

    Article  Google Scholar 

  • Losos J (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism American Society of Naturalists E.O. Wilson Award Address. Am Nat 175(6):623–639. https://doi.org/10.1086/652433

    Article  PubMed  Google Scholar 

  • Mabee PM, Olmstead KL, Cubbage CC (2000) An experimental study of intraspecific variation, developmental timing, and heterochrony in fishes. Evolution 54(6):2091–2106. https://doi.org/10.1111/j.0014-3820.2000.tb01252.x

    Article  CAS  PubMed  Google Scholar 

  • Malats N, Calafell F (2003) Basic glossary on genetic epidemiology. J Epidemiol Community Health 57(7):480. https://doi.org/10.1136/jech.57.7.480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin K (2015) A multidisciplinary approach to investigating population differentiation of lake trout in Québec’s largest lake. Concordia University

    Google Scholar 

  • Marin K, Coon A, Carson R, Debes PV, Fraser DJ (2016) Striking phenotypic variation yet low genetic differentiation in Sympatric Lake Trout (Salvelinus namaycush). PLoS One 11(9):e0162325. https://doi.org/10.1371/journal.pone.0162325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin NV (1952) A study of the lake trout, Salvelinus namaycush, in two Algonquin Park, Ontario, lakes. Trans Am Fish Soc 81:111–137

    Article  Google Scholar 

  • Martin NV (1966) The significance of food habits in the biology, exploitation, and management of Algonquin Park, Ontario, Lake Trout. Trans Am Fish Soc (1900) 95(4):415–422. https://doi.org/10.1577/1548-8659(1966)95[415:TSOFHI]2.0.CO;2

    Article  Google Scholar 

  • Martin NV, Olver CH (1980) The lake charr, Salvelinus namaycush. In: Balon EK (ed) Charrs: salmonid fishes of the genus Salvelinus. Dr. W. Junk Publication, The Hague, pp 205–277

    Google Scholar 

  • Matuszek JE, Shuter BJ, Casselman JM (1990) Changes in Lake Trout Growth and Abundance after Introduction of Cisco into Lake Opeongo, Ontario. Trans Am Fish Soc 119(4):718–729

    Article  Google Scholar 

  • McCann KS, Rasmussen JB, Umbanhowar J (2005) The dynamics of spatially coupled food webs. Ecol Lett 8(5):513–523. https://doi.org/10.1111/j.1461-0248.2005.00742.x

    Article  CAS  PubMed  Google Scholar 

  • McDermid JL (2007) Life history variation in lake trout (Salvelinus namaycush): genetic or phenotypic? Ph.D. thesis, University of Toronto

    Google Scholar 

  • McDermid JL, Ihssen PE, Sloan WN, Shuter BJ (2007) Genetic and environmental influences on life history traits in Lake Trout. Trans Am Fish Soc 136(4):1018–1029. https://doi.org/10.1577/T06-189.1

    Article  Google Scholar 

  • McDermid JL, Shuter BJ, Lester NP (2010) Life history differences parallel environmental differences among North American lake trout (Salvelinus namaycush) populations. Can J Fish Aquat Sci 67(2):314–325

    Article  Google Scholar 

  • McKay BD, Zink RM (2015) Sisyphean evolution in Darwin’s finches. Biol Rev 90(3):689–698. https://doi.org/10.1111/brv.12127

    Article  PubMed  Google Scholar 

  • Mcphee MV, Noakes DL, Allendorf FW (2012) Developmental rate: a unifying mechanism for sympatric divergence in postglacial fishes? Curr Zool 58(1):21–34

    Article  Google Scholar 

  • Metcalf CJE, Pavard S (2007) Why evolutionary biologists should be demographers. Trends Ecol Evol 22(4):205–212. https://doi.org/10.1016/j.tree.2006.12.001

    Article  PubMed  Google Scholar 

  • Moore SA, Bronte CR (2001) Delineation of sympatric morphotypes of lake trout in Lake Superior. Trans Am Fish Soc 130(6):1233–1240

    Article  Google Scholar 

  • Morbey YE, Vascotto K, Shuter BJ (2007) Dynamics of Piscivory by Lake Trout following a smallmouth bass invasion: a historical reconstruction. Trans Am Fish Soc 136(2):477–483. https://doi.org/10.1577/T06-070.1

    Article  Google Scholar 

  • Morissette O, Sirois P, Lester NP, Wilson CC, Bernatchez L (2018) Supplementation stocking of Lake Trout (Salvelinus namaycush) in small boreal lakes: Ecotypes influence on growth and condition. PLoS One 13(7):e0200599. https://doi.org/10.1371/journal.pone.0200599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morissette O, Sirois P, Wilson CC, Laporte M, Bernatchez L (2019) The role of ecotype-environment interactions in intraspecific trophic niche partitioning subsequent to stocking. Ecol Appl 29(3):e01857. https://doi.org/10.1002/eap.1857

    Article  CAS  PubMed  Google Scholar 

  • Muir AM, Bronte CR, Zimmerman MS, Quinlan HR, Glase JD, Krueger CC (2014a) Ecomorphological diversity of Lake Charr Salvelinus namaycush at Isle Royale, Lake Superior. Trans Am Fish Soc 143(4):972–987

    Article  Google Scholar 

  • Muir AM, Vecsei P, Power M, Krueger CC, Reist JD (2014b) Morphology and life history of the Great Slave Lake ciscoes (Salmoniformes: Coregonidae). Ecol Freshw Fish 23(3):453–469. https://doi.org/10.1111/eff.12098

    Article  Google Scholar 

  • Muir AM, Hansen MJ, Bronte CR, Krueger CC (2015) If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish Fish. https://doi.org/10.1111/faf.12114

  • Muir AM, Bennion D, Hansen MJ, Gunn JM (2021) Distribution. In: Muir AM, Hansen MJ, Riley SC, Krueger CC (eds) The Lake Charr Salvelinus namaycush: biology, ecology, distribution, and management. Springer, Heidelberg

    Chapter  Google Scholar 

  • Nonaka E, Svanbäck R, Thibert-Plante X, Englund G, Brännström Å (2015) Mechanisms by which phenotypic plasticity affects adaptive divergence and ecological speciation. Am Nat 186(5):126–143

    Article  Google Scholar 

  • Nordeng H (1983) Solution to the “ char problem” based on Arctic char (Salvelinus alpinus) in Norway. Can J Fish Aquat Sci 40(9):1372–1387

    Article  Google Scholar 

  • Northrup S, Connor M, Taylor EB (2010) Population structure of lake trout (Salvelinus namaycush) in a large glacial-fed lake inferred from microsatellite DNA and morphological analysis. Can J Fish Aquat Sci 67(7):1171–1186. https://doi.org/10.1139/F10-054

    Article  CAS  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press

    Google Scholar 

  • O’Grady JJ, Reed DH, Brook BW, Frankham R (2008) Extinction risk scales better to generations than to years. Anim Conserv 11(5):442–451. https://doi.org/10.1111/j.1469-1795.2008.00201.x

    Article  Google Scholar 

  • Oke KB, Bukhari M, Kaeuffer R, Rolshausen G, Räsänen K, Bolnick DI, Peichel CL, Hendry AP (2016) Does plasticity enhance or dampen phenotypic parallelism? A test with three lake–stream stickleback pairs. J Evol Biol 29(1):126–143. https://doi.org/10.1111/jeb.12767

    Article  CAS  PubMed  Google Scholar 

  • Orlane A, Emilien L, Jean G, Reiner E, Jason DS, Christian G, Daniel LY (2015) Impact of fishing and stocking practices on coregonid diversity. Food Nutr Sci 6(11):1045–1055. https://doi.org/10.4236/fns.2015.611108

    Article  Google Scholar 

  • Page KS, Scribner KT, Burnham-Curtis M (2004) Genetic diversity of wild and hatchery lake trout populations: relevance for management and restoration in the Great Lakes. Trans Am Fish Soc 133(3):674–691

    Article  Google Scholar 

  • Pakkasmaa S, Piironen J (2001) Morphological differentiation among local trout (Salmo trutta) populations. Biol J Linn Soc 72(2):231–239. https://doi.org/10.1111/j.1095-8312.2001.tb01313.x

    Article  Google Scholar 

  • Parsons KJ, Sheets HD, SkÚLason S, Ferguson MM (2011) Phenotypic plasticity, heterochrony and ontogenetic repatterning during juvenile development of divergent Arctic charr (Salvelinus alpinus). J Evol Biol 24(8):1640–1652. https://doi.org/10.1111/j.1420-9101.2011.02301.x

    Article  CAS  PubMed  Google Scholar 

  • Pazzia I, Trudel M, Ridgway M, Rasmussen JB (2002) Influence of food web structure on the growth and bioenergetics of lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 59(10):1593–1605

    Article  Google Scholar 

  • Perreault-Payette A, Muir AM, Goetz F, Perrier C, Normandeau E, Sirois P, Bernatchez L (2017) Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Mol Ecol 26(6):1477–1497. https://doi.org/10.1111/mec.14018

    Article  CAS  PubMed  Google Scholar 

  • Persson L, Claessen D, De Roos AM, Byström P, Sjögren S, Svanbäck R, Wahlström E, Westman E (2004) Cannibalism in a size-structured population: energy extraction and control. Ecol Monogr 74(1):135–157. https://doi.org/10.1890/02-4092

    Article  Google Scholar 

  • Pfennig DW, McGee M (2010) Resource polyphenism increases species richness: a test of the hypothesis. Philos Trans R Soc B Biol Sci 365(1540):577

    Article  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25(8):459–467

    Article  PubMed  Google Scholar 

  • Piggott CVH, Verspoor E, Greer R, Hooker O, Newton J, Adams CE (2018) Phenotypic and resource use partitioning amongst sympatric, lacustrine brown trout, Salmo trutta. Biol J Linn Soc 124(2):200–212. https://doi.org/10.1093/biolinnean/bly032

    Article  Google Scholar 

  • Poesch MS, Chavarie L, Chu C, Pandit SN, Tonn W (2016) Climate change impacts on freshwater fishes: a Canadian perspective. Fisheries 41(7):385–391. https://doi.org/10.1080/03632415.2016.1180285

    Article  Google Scholar 

  • Post DM, Pace ML, Hairston NG Jr (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Power G (2002) Charrs, glaciations and seasonal ice. Environ Biol Fishes 64:17–35

    Article  Google Scholar 

  • Præbel K, Knudsen R, Siwertsson A, Karhunen M, Kahilainen KK, Ovaskainen O, Østbye K, Peruzzi S, Fevolden SE, Amundsen PA (2013) Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecol Evol 3(15):4970–4986

    Article  PubMed  PubMed Central  Google Scholar 

  • Quevedo M, Svanbäck R, Eklöv P (2009) Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90(8):2263–2274. https://doi.org/10.1890/07-1580.1

    Article  PubMed  Google Scholar 

  • Rasmussen JB (1990) Food chain structure in Ontario lakes determines PCB levels in Lake Trout (Salvelinus namaycush) and other pelagic fish. Can J Fish Aquat Sci 47(10):2030–2038. https://doi.org/10.1139/f90-227

    Article  Google Scholar 

  • Recknagel H, Hooker OE, Adams CE, Elmer KR (2017) Ecosystem size predicts eco-morphological variability in a postglacial diversification. Ecol Evol 7(15):5560–5570. https://doi.org/10.1002/ece3.3013

    Article  PubMed  PubMed Central  Google Scholar 

  • Reist JD, Power M, Dempson JB (2013) Arctic charr (Salvelinus alpinus): a case study of the importance of understanding biodiversity and taxonomic issues in northern fishes. Biodiversity 14(1):45–56

    Article  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29(3):165–176. https://doi.org/10.1016/j.tree.2014.01.002

    Article  PubMed  Google Scholar 

  • Ridgway M, Middel T, Bell A (2017) Aquatic ecology, history, and diversity of Algonquin provincial park. Science and Research Information Report - Ontario Ministry of Natural Resources and Forestry (No.IR-10):xviii +203 p

    Google Scholar 

  • Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59(11):1819–1833. https://doi.org/10.1139/f02-144

    Article  Google Scholar 

  • Rundle HD, Nagel L, Boughman JW, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. Science 287(5451):306

    Article  CAS  PubMed  Google Scholar 

  • Saunders LH, Power G (1969) The Arctic char, Salvelinus alpinus (Linnaeus), of Matamek Lake, Quebec. Nat Can 96:919–934

    Google Scholar 

  • Schindler DE, Scheuerell MD, Moore JW, Gende SM, Francis TB, Palen WJ (2003) Pacific salmon and the ecology of coastal ecosystems. Front Ecol Environ 1(1):31–37. https://doi.org/10.1890/1540-9295(2003)001[0031:PSATEO]2.0.CO;2

    Article  Google Scholar 

  • Schluter D (1996) Ecological speciation in postglacial fishes. Philos Trans R Soc Lond B Biol Sci 351:807–814

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16(7):372–380. https://doi.org/10.1016/S0169-5347(01)02198-X

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2015) Speciation, ecological opportunity, and latitude. Am Nat 187(1):1–18. https://doi.org/10.1086/684193

    Article  PubMed  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin 184, Ottawa, ON

    Google Scholar 

  • Scott WB, Crossman EJ (1998) Freshwater fishes of Canada. Galt House Publications, Oakville

    Google Scholar 

  • Seehausen O, Wagner CE (2014) Speciation in freshwater fishes. Annu Rev Ecol Evol Syst 45:621–651

    Article  Google Scholar 

  • Seehausen OLE, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17(1):30–44. https://doi.org/10.1111/j.1365-294X.2007.03529.x

    Article  PubMed  Google Scholar 

  • Sideleva VG (1996) Comparative character of the deep-water and inshore cottoid fishes endemic to Lake Baikal. J Fish Biol 49:192–206. https://doi.org/10.1111/j.1095-8649.1996.tb06076.x

    Article  Google Scholar 

  • Sitar SP, Morales HM, Mata MT, Bastar BB, Dupras DM, Kleaver GD, Rathbun KD (2008) Survey of siscowet lake trout at their maximum depth in Lake Superior. J Great Lakes Res 34:276–286

    Article  Google Scholar 

  • Sitar SP, Jasonowicz AJ, Murphy CA, Goetz FW (2014) Estimates of skipped spawning in Lean and Siscowet Lake Trout in Southern Lake Superior: implications for stock assessment. Trans Am Fish Soc 143(3):660–672. https://doi.org/10.1080/00028487.2014.880745

    Article  Google Scholar 

  • Siwertsson A, Knudsen R, Kahilainen K, Præbel K, Primicerio R, Amundsen P-A (2010) Sympatric diversification as influenced by ecological opportunity and historical contingency in a young species lineage of whitefish.

    Google Scholar 

  • Skulason S, Smith TB (1995) Resource polymorphisms in vertebrates. Trends Ecol Evol 10:366–370

    Article  CAS  PubMed  Google Scholar 

  • Skúlason S, Noakes DLG, Snorrason SS (1989) Ontogeny of trophic morphology in four sympatric morphs of arctic charr Salvelinus alpinus in Thingvallavatn, Iceland. Biol J Linn Soc 38(3):281–301. https://doi.org/10.1111/j.1095-8312.1989.tb01579.x

    Article  Google Scholar 

  • Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P-A, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CAL, Jónsson Z, Öhlund G, Smith C, Snorrason SS (2019) A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev. https://doi.org/10.1111/brv.12534

  • Smith TB, Skulason S (1996) Evoloutionary significance of resource polymorphims in fishes, amphibians, and birds. Annu Rev Ecol Syst 27:111–133

    Article  Google Scholar 

  • Snorrason SS, Skúlason S (2004) Adaptive speciation in northern freshwater fishes. Adaptive speciation. Cambridge University Press, Cambridge, pp 210–228

    Google Scholar 

  • Snorrason SS, Skúlason S, Jonsson B, Malmquist HJ, Jonasson PM, Sandlund OT, Lindem T (1994) Trophic specialization in Arctic charr Salvelinus alpinus (Pisces; Salmonidae): morphological divergence and ontogenetic niche shifts. Biol J Linn Soc 52(1):1–18

    Article  Google Scholar 

  • Stafford CP, McPhee MV, Eby LA, Allendorf FW (2013) Introduced lake trout exhibit life history and morphological divergence with depth. Can J Fish Aquat Sci 71(1):10–20. https://doi.org/10.1139/cjfas-2013-0115

    Article  Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47(1):507–532. https://doi.org/10.1146/annurev-ecolsys-121,415-032254

    Article  Google Scholar 

  • Svanbäck R, Persson L (2004) Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J Anim Ecol 73(5):973–982

    Article  Google Scholar 

  • Svanbäck R, Quevedo M, Olsson J, Eklöv P (2015) Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation. Oecologia 178(1):103–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson HK, Kidd KA, Babaluk JA, Wastle RJ, Yang PP, Halden NM, Reist JD (2010) Anadromy in Arctic populations of lake trout (Salvelinus namaycush): otolith microchemistry, stable isotopes, and comparisons with Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 67(5):842–853. https://doi.org/10.1139/f10-022

    Article  CAS  Google Scholar 

  • Swanson HK, Kidd KA, Reist JD (2011) Quantifying importance of marine prey in the diets of two partially anadromous fishes. Can J Fish Aquat Sci 68(11):2020–2028. https://doi.org/10.1139/f2011-111

    Article  Google Scholar 

  • Taylor EB (1999) Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev Fish Biol Fish 9(4):299–324. https://doi.org/10.1023/A:1008955229420

    Article  Google Scholar 

  • Taylor E, Boughman J, Groenenboom M, Sniatynski M, Schluter D, Gow J (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15(2):343–355

    Article  CAS  PubMed  Google Scholar 

  • Telnes T, SÆgrov H (2004) Reproductive strategies in two sympatric morphotypes of Arctic charr in Kalandsvatnet, west Norway. J Fish Biol 65(2):574–579. https://doi.org/10.1111/j.0022-1112.2004.00432.x

    Article  Google Scholar 

  • Turcotte MM, Reznick DN, Hare JD (2011) The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol Lett 14(11):1084–1092

    Article  PubMed  Google Scholar 

  • Turgeon J, Estoup A, Bernatchez L (1999) Species flock in the North American Great Lakes: molecular ecology of Lake Nipigon ciscoes (Teleostei: Coregonidae: Coregonus). Evolution 53:1857–1871

    CAS  PubMed  Google Scholar 

  • Van Der Meer HJ, Anker GC (1983) Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth J Zool 34(2):197–209. https://doi.org/10.1163/002829684X00146

    Article  Google Scholar 

  • Vander Zanden JM, Rasmussen JB (1996) A trophic position model of pelagic food webs: impact on contaminant bioacumulation in lake trout. Ecol Monogr 66(4):451–477

    Article  Google Scholar 

  • Vander Zanden JM, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–2161

    Article  Google Scholar 

  • Vander Zanden JM, Casselman JM, Rasmussen JB (1999a) Stable isotope evidence for food web consequences of species invasions in lakes. Nature 401:464–467

    Article  CAS  Google Scholar 

  • Vander Zanden JM, Shuter BJ, Lester N, Rasmussen JB (1999b) Patterns of food chain length in lakes: a stable isotope study. Am Nat 154(4):406–416

    Article  PubMed  Google Scholar 

  • Vander Zanden MJ, Shuter BJ, Lester NP, Rasmussen JB (2000) Within-and among-population variation in the trophic position of a pelagic predator, lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 57(4):725–731

    Article  Google Scholar 

  • Videler JJ (1993) Fish swimming, vol 10. Springer Science & Business Media

    Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27(4):244–252. https://doi.org/10.1016/j.tree.2011.11.014

    Article  PubMed  Google Scholar 

  • Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120

    Article  Google Scholar 

  • Wellband K, Baillie SM, Bentzen P, Bernatchez L (2021) Genetic diversity. In: Muir AM, Hansen MJ, Riley SC, Krueger CC (eds) The Lake Charr Salvelinus namaycush: biology, ecology, distribution, and management. Springer, Heidelberg

    Google Scholar 

  • Wellborn GA, Langerhans RB (2015) Ecological opportunity and the adaptive diversification of lineages. Ecol Evol 5(1):176–195

    Article  PubMed  Google Scholar 

  • Wennersten L, Forsman A (2012) Population-level consequences of polymorphism, plasticity and randomized phenotype switching: a review of predictions. Biol Rev 87(3):756–767. https://doi.org/10.1111/j.1469-185X.2012.00231.x

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press

    Google Scholar 

  • Wilson CC, Hebert PDN (1998) Phylogeography and postglaical dispersal of lake trout (Salvelinus namaycush) in North America. Can J Fish Aquat Sci 55:1010–1024

    Article  Google Scholar 

  • Wilson CC, Mandrak NE (2004) History and evolution of lake trout in shield lakes: past and future challenges. In: Gunn JM, Steedmar RJ, Ryder RA (eds) Boreal shield watersheds: lake trout ecosystems in a changing environment. Lewis, Boca Raton, FL

    Google Scholar 

  • Wilson CC, Mandrak NE (2021) Paleoecology. In: Muir AM, Hansen MJ, Riley SC, Krueger CC (eds) The Lake Charr Salvelinus namaycush: biology, ecology, distribution, and management. Springer, Heidelberg

    Google Scholar 

  • Wilson CC, McDermid JL, Wozney KM, Kjartanson S, Haxton TJ (2014) Genetic estimation of evolutionary and contemporary effective population size in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. J Appl Ichthyol 30(6):1290–1299. https://doi.org/10.1111/jai.12615

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC, Eshenroder RL (2006) Phenotypic diversity of lake trout in Great Slave Lake: differences in morphology, buoyancy, and habitat depth. Trans Am Fish Soc 135:1056–1067

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC, Eshenroder RL (2007) Morphological and ecological differences between shallow- and deep-water lake trout in Lake Mistassini, Quebec. J Great Lakes Res 33:156–169

    Article  Google Scholar 

  • Zimmerman MS, Schmidt SN, Krueger CC, Vander Zanden MJ, Eshenroder RL (2009) Ontogenetic niche shifts and resource partitioning of lake trout morphotypes. Can J Fish Aquat Sci 66:1007–1018. https://doi.org/10.1139/F09-060

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Chuck Krueger and Andrew Muir for providing early reviews for this chapter. We thank Andrew Muir for providing Fig. 4. Two anonymous reviewers and the editor Mike Hansen aided in improving the manuscript and we extend our appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Chavarie .

Editor information

Editors and Affiliations

Glossary

Glossary is a synthesis of the following sources: Skulason and Smith (1995), Allendorf et al. (2001), Glossary (2001), Malats and Calafell (2003), Kuparinen and Merilä (2007), Metcalf and Pavard (2007), Bolnick et al. (2011), Violle et al. (2012); Richardson et al. (2014).

Adaptation

The evolution of heritable traits in a population that result in higher fitness of individuals with those traits.

Adaptive divergence

The evolution of differences between populations as a result of adaptation to different environmental conditions and divergent natural selection.

Allopatry

Geographical separation, such that members of two or more populations fail to encounter one another.

Continuous variation

Variation that follows a normal distribution in the population.

Discrete variation

Variation that is discontinuous in the population.

Disruptive selection

Natural selection within a single population toward two or more different phenotypes, for example, when large or small individuals have an advantage over those of intermediate size.

Divergent selection

Natural selection in different directions within each of several populations, for example, when large size is favored in one population, whereas small size is favored in another.

Eco-evolutionary dynamics

Effects of ecological changes on evolutionary dynamics or the effects of evolutionary changes on ecological dynamics; feedbacks arise when a loop links both directions of effect.

Ecological speciation

The evolution of reproductive isolation caused ultimately by divergent natural selection on traits between populations (or disruptive selection between phenotypes of a single population) in different environments (including use of different resources).

Ecotype

An ecologically and phenotypically distinct group of individuals that belong to the same species.

Effective population size (Ne)

The size of an “ideal” (stable, random mating) population that results in the same degree of genetic drift or inbreeding as observed in the actual population.

Functional trait

Any trait affecting, directly or indirectly, individual performance and fitness of species.

Genotype

The genetic constitution of an organism, which is modulated by the environment before being expressed as a phenotype.

Intraspecific diversity

Variation occurring within a species.

Introgression

Gene flow between populations whose individuals hybridize.

Phenotype

The outward expression of an individual’s genotype as affected by the environment (see “trait” below).

Phenotypic variation

Variation within or among populations for an expressed trait that can be due to either phenotypic plasticity or genetic variation.

Phenotypic divergence

Divergence of trait means between two or more populations or subpopulations.

Phenotypic plasticity

The ability of the same genotype to produce or express different phenotypes.

Reproductive isolation

Absence or severe restriction of gene flow between populations whose members are in contact with one another.

Resource polymorphism

Occurrence of different phenotypes associated with segregation in habitat and diet.

Sympatry

Absence of geographical separation, such that all individuals have the same chance of meeting each other.

Trait

Any morphological, physiological, phenological, or behavioral feature measurable at the individual level.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chavarie, L., Adams, C.E., Swanson, H.K., Ridgway, M.S., Tonn, W.M., Wilson, C.C. (2021). Ecological Diversity. In: Muir, A.M., Krueger, C.C., Hansen, M.J., Riley, S.C. (eds) The Lake Charr Salvelinus namaycush: Biology, Ecology, Distribution, and Management. Fish & Fisheries Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-62259-6_4

Download citation

Publish with us

Policies and ethics