Skip to main content

Abstract

During the past decade, MALDI-TOF (Matrix-Assisted Laser Desorption Ionisation Time of Flight) MS (Mass Spectrometry), a method that utilises the protein content of bacteria for identification, has been widely used in clinical practice. The wide distribution of this technology in microbiology labs around the world allows the exploration of novel uses of this method for other purposes such as identifying antibiotic resistance and rapid identification of bacterial isolates directly from different clinical samples. This chapter will review the current experience with these new promising applications of proteomics in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    Article  CAS  PubMed  Google Scholar 

  2. Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel R (2015) MALDI-TOF MS for the diagnosis of infectious disease. Clin Chem 61:100–111

    Article  CAS  PubMed  Google Scholar 

  4. Anhalt J, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  5. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  6. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt BH, Cunningham SA, Dailey AL, Gustafson DR, Patel R (2013) Identification of anaerobic bacteria by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry with on-plate formic acid preparation. J Clin Microbiol 51:782–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P, Corcoran D et al (2017) How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect. pii: S1198-743X(17)30643-2

    Google Scholar 

  9. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  11. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE (2011) Identification of gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34(1):58–62

    Article  CAS  PubMed  Google Scholar 

  12. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, Deml SM, Wohlfiel SL, Wengenack NL (2016) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic actinomycetes. J Clin Microbiol 54:376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quiles-Melero I, García-Rodríguez J, Gómez-López A, Mingorance J (2012) Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis 31:67–71

    Article  CAS  PubMed  Google Scholar 

  14. Posteraro B, De Carolis E, Vella A, Sanguinetti M (2013) MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 10(2):151–164

    Article  CAS  PubMed  Google Scholar 

  15. L’Ollivier C, Cassagne C, Normand AC, Bouchara JP, Contet-Audonneau N, Hendrickx M, Fourquet P, Coulibaly O, Piarroux R, Ranque S (2013) A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Med Mycol 51:713–720

    Article  PubMed  CAS  Google Scholar 

  16. Zvezdanova ME, Escribano P, Ruiz A, Martínez-Jiménez MC, Peláez T, Collazos A, Guinea J, Bouza E, Rodríguez-Sánchez B (2018) Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med Mycol. https://doi.org/10.1093/mmy/myx154

  17. Oberle M, Wohlwend N, Jonas D, Maurer FP, Jost G, Tschudin-Sutter S, Vranckx K, Egli A (2016) The technical and biological reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) based typing: employment of bioinformatics in a multicenter study. PLoS One 11:e0164260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kostrzewa M, Sparbier K, Maier T, Schubert S (2013) MALDI-TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl 7(11–12):767–778

    Article  CAS  PubMed  Google Scholar 

  19. Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G (2010) Matrix-assisted laser desorption ionization time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48:1481–1483

    Article  PubMed  PubMed Central  Google Scholar 

  20. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M (2010) Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48(5):1584–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoyos-Mallecot Y, Miranda-Casas C, Cabrera-Alvargonzalez JJ, Gómez-Camarasa C, Pérez-Ramirez MD, Navarro-Marí JM (2013) Bacterial identification from blood cultures by a rapid matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry technique. Enferm Infecc Microbiol Clin 31:152–155

    Article  PubMed  Google Scholar 

  22. Rodríguez-Sánchez B, Sánchez-Carrillo C, Ruiz A, Marín M, Cercenado E, Rodríguez-Créixems M, Bouza E (2014) Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Clin Microbiol Infect 20:O421–O427

    Article  PubMed  CAS  Google Scholar 

  23. Verroken A, Defourny L, Lechgar L, Magnette A, Delmée M, Glupczynski Y (2015) Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur J Clin Microbiol Infect Dis 34:405–413

    Article  CAS  PubMed  Google Scholar 

  24. Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K (2014) Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect 20:1001–1006

    Article  CAS  PubMed  Google Scholar 

  25. Kohlmann R, Hoffmann A, Geis G, Gatermann S (2015) MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures. Int J Med Microbiol 305:469–479

    Article  CAS  PubMed  Google Scholar 

  26. Schieffer KM, Tan KE, Stamper PD, Somogyi A, Andrea SB, Wakefield T, Romagnoli M, Chapin KC, Wolk DM, Carroll KC (2014) Multicenter evaluation of the Sepsityper extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC FX and VersaTREK diagnostic blood culture systems. J Appl Microbiol 116:934–941

    Article  CAS  PubMed  Google Scholar 

  27. Martinez RM, Bauerle ER, Fang FC, Butler-Wu SM (2014) Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures. J Clin Microbiol 52:2521–2529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Morgenthaler NG, Kostrzewa M (2015) Rapid identification of pathogens in positive blood culture of patients with sepsis: review and meta-analysis of the performance of the sepsityper kit. Int J Microbiol 2015:827416

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bidart M, Bonnet I, Hennebique A, Kherraf ZE, Pelloux H, Berger F, Cornet M, Bailly S, Maubon D (2015) An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J Clin Microbiol 53:1761–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeddi F, Yapo-Kouadio GC, Normand AC, Cassagne C, Marty P, Piarroux R (2017) Performance assessment of two lysis methods for direct identification of yeasts from clinical blood cultures using MALDI-TOF mass spectrometry. Med Mycol 55:185–192

    Article  CAS  PubMed  Google Scholar 

  31. French K, Evans J, Tanner H, Gossain S, Hussain A (2016) The clinical impact of rapid. Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures PLoS One 11:e0169332

    PubMed  Google Scholar 

  32. Beganovic M, Costello M, Wieczorkiewicz SM (2017) Effect of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) alone versus MALDI-TOF MS combined with real-time antimicrobial stewardship interventions on time to optimal antimicrobial therapy in patients with positive blood cultures. J Clin Microbiol 55:1437–1445

    Article  PubMed  PubMed Central  Google Scholar 

  33. Osthoff M, Gürtler N, Bassetti S, Balestra G, Marsch S, Pargger H, Weisser M, Egli A (2017) Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect 23:78–85

    Article  CAS  PubMed  Google Scholar 

  34. Malcolmson C, Ng K, Hughes S, Kissoon N, Schina J, Tilley PA, Roberts A (2017) Impact of matrix-assisted laser desorption and ionization time-of-flight and antimicrobial stewardship intervention on treatment of bloodstream infections in hospitalized children. J Pediatric Infect Dis Soc 6:178–186

    PubMed  Google Scholar 

  35. Reuter CH, Palac HL, Kociolek LK, Zheng XT, Chao YY, Patel R, Patel SJ (2018) Ideal and actual impact of rapid diagnostic testing and antibiotic stewardship on antibiotic prescribing and clinical outcomes in children with positive blood cultures. Pediatr Infect Dis J 38:131–137. https://doi.org/10.1097/INF.0000000000002102

    Article  Google Scholar 

  36. Íñigo M, Coello A, Fernández-Rivas G, Rivaya B, Hidalgo J, Quesada MD, Ausina V (2016) Direct identification of urinary tract pathogens from urine samples, combining urine screening methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 54:988–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Burillo A, Rodríguez-Sánchez B, Ramiro A, Cercenado E, Rodríguez-Créixems M, Bouza E (2014) Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS One 9:e86915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zboromyrska Y, Rubio E, Alejo I, Vergara A, Mons A, Campo I, Bosch J, Marco F, Vila J (2016) Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin Microbiol Infect 22:561.e1–561.e6

    Article  CAS  Google Scholar 

  39. Oviaño M, Ramírez CL, Barbeyto LP, Bou G (2017) Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J Antimicrob Chemother 72:1350–1354

    PubMed  Google Scholar 

  40. Bishop B, Geffen Y, Plaut A, Kassis O, Bitterman R, Paul M, Neuberger A (2018) The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid bacterial identification in patients with smear-positive bacterial meningitis. Clin Microbiol Infect 24:171–174

    Article  CAS  PubMed  Google Scholar 

  41. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82

    Article  CAS  PubMed  Google Scholar 

  42. Hrabák J, Chudácková E, Walková R (2013) Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 26:103–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3222–3227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Horneffer V, Strupat K, Hillenkamp F (2006) Localization of noncovalent complexes in MALDI-preparations by CLSM. J Am Soc Mass Spectrom 17:1599–1604

    Article  CAS  PubMed  Google Scholar 

  45. Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E et al (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:2441–2443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E et al (2015) Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol 53:1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49:3321–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 50:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oviaño M, Gómara M, Barba MJ, Revillo MJ, Barbeyto LP, Bou G (2017) Towards the early detection of β-lactamase-producing Enterobacteriaceae by MALDI-TOF MS analysis. J Antimicrob Chemother 72:2259–2262

    Article  PubMed  CAS  Google Scholar 

  50. Lasserre C, De Saint ML, Cuzon G, Bogaerts P, Lamar E, Glupczynski Y et al (2015) Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol 53:2163–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Monteferrante CG, Sultan S, Ten Kate MT, Dekker LJ, Sparbier K, Peer M et al (2016) Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J Antimicrob Chemother 71:2856–2867

    Article  CAS  PubMed  Google Scholar 

  52. Ferreira L, Sanchez-Juanes F, Gonzalez-Avila M, Cembrero-Fucinos D, Herrero-Hernandez A, Gonzalez-Buitrago JM et al (2010) Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:2110–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan Y, He Y, Maier T, Quinn C, Shi G, Li H et al (2011) Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol 49:2528e32

    Google Scholar 

  54. Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S (2014) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J Clin Microbiol 52:924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oviaño M, Fernández B, Fernández A, Barba MJ, Mouriño C, Bou G (2014) Rapid detection of Enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin Microbiol Infect 20:1146–1157

    Article  PubMed  CAS  Google Scholar 

  56. Oviaño M, Sparbier K, Barba MJ, Kostrzewa M, Bou G (2016) Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Int J Antimicrob Agents 48:655–660

    Article  PubMed  CAS  Google Scholar 

  57. Kostrzewa M (2018) Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Rev Proteomics. https://doi.org/10.1080/14789450.2018.1438193

  58. Oviaño M, Rodríguez-Martínez JM, Pascual Á, Bou G (2017) Rapid detection of the plasmid-mediated quinolone resistance determinant AAC(6′)-Ib-cr in Enterobacteriaceae by MALDI-TOF MS analysis. J Antimicrob Chemother 72:1074–1080

    PubMed  Google Scholar 

  59. Oviaño M, Gómara M, Barba MJ, Sparbier K, Pascual Á, Bou G (2017) Quantitative and automated MALDI-TOF MS-based detection of the plasmid-mediated quinolone resistance determinant AAC(6′)-Ib-cr in Enterobacteriaceae. J Antimicrob Chemother 72:2952–2954

    Article  PubMed  CAS  Google Scholar 

  60. Pardo CA, Tan RN, Hennequin C, Beyrouthy R, Bonnet R, Robin F (2016) Rapid detection of AAC(6′)-Ib-cr production using a MALDI-TOF MS strategy. Eur J Clin Microbiol Infect Dis 35:2047–2051

    Article  CAS  PubMed  Google Scholar 

  61. Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M (2013) MALDI biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol 51:3741–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lange C, Schubert S, Jung J, Kostrzewa M, Sparbier K (2014) Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection. J Clin Microbiol 52:4155–4162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M et al (2016) Evaluation of a semiquantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry method for rapid antimicrobial susceptibility testing of positive blood cultures. J Clin Microbiol 54:2820–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maxson T, Taylor-Howell CL, Minogue TD (2017) Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus. PLoS One 12:e0183899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ceyssens PJ, Soetaert K, Timke M, Van den Bossche A, Sparbier K, De Cremer K et al (2017) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in mycobacteria. J Clin Microbiol 55:624–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M et al (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50:2479–2483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M et al (2013) Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol 51:2964–2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Idelevich EA, Sparbier K, Kostrzewa M, Becker K (2017) Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect. pii: S1198-743X(17)30578-5

    Google Scholar 

  69. Meier MA, Hoogenboom R, Fijten MW, Schneider M, Schubert US (2003) Automated MALDI-TOF-MS sample preparation in combinatorial polymer research. J Comb Chem 5:369–374

    Article  CAS  PubMed  Google Scholar 

  70. Broyer P, Perrot N, Rostaing H, Blaze J, Pinston F, Gervasi G, Charles MH, Dachaud F, Dachaud J, Moulin F, Cordier S, Dauwalder O, Meugnier H, Vandenesch F (2018) An automated sample preparation instrument to accelerate positive blood cultures microbial identification by MALDI-TOF mass spectrometry (Vitek® MS). Front Microbiol 9:911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Rodríguez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Sánchez, B., Oviaño, M. (2021). Advanced Applications of MALDI-TOF: Identification and Antibiotic Susceptibility Testing. In: Moran-Gilad, J., Yagel, Y. (eds) Application and Integration of Omics-powered Diagnostics in Clinical and Public Health Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-62155-1_10

Download citation

Publish with us

Policies and ethics