Skip to main content

Production of Biodiesel from Organic Wastes by Bioconversion

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Abstract

Biodiesel comes in the category of renewable and biodegradable fuel. It has shown promising performances for substituting petroleum. Due to the outbreak of urbanization and population blast in recent years, there is enormous increase in the production of waste and also lack of its appropriate disposal. Municipal solid wastes, agricultural waste, industries and manufacturing processes generate large amounts of waste materials. The technologies associated with waste to energy conversion produce various types of fuel which are further utilized to meet the needs of energy. Production of synthetic fuels from organic wastes follows four important techniques like bioconversion, gasification, pyrolysis and hydrogenation. This chapter throws light on waste biomass, different categories of organic waste, utilization of organic waste for production of value-added products especially biofuels. Moreover, bioconversion of various types of organic waste into biodiesel guided by microorganisms, algae, insects, etc. are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alptekin, E. (2017). Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy, 119, 44–52.

    Article  CAS  Google Scholar 

  • Aluya, J. (2014). Leadership styles inextricably intertwined with the alternative energy of solar, wind, or hybrid as disruptive technologies. Energy Sources, Part B: Economics, Planning and Policy, 9(3), 276–283.

    Article  Google Scholar 

  • Aristidou, A., & Penttilä, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.

    Article  CAS  Google Scholar 

  • Balat, M. (2009a). Global status of biomass energy use. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 31(13), 1160–1173.

    Article  CAS  Google Scholar 

  • Balat, M. (2009b). Gasification of biomass to produce gaseous products. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 31(6), 516–526.

    Article  CAS  Google Scholar 

  • Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49(10), 2727–2741.

    Article  CAS  Google Scholar 

  • Balat, M., & Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589–3603.

    Article  CAS  Google Scholar 

  • Balat, M., & Demirbas, M. F. (2009). Bio-oil from pyrolysis of black alder wood. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 31(19), 1719–1727.

    Article  CAS  Google Scholar 

  • Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157.

    Article  CAS  Google Scholar 

  • Barnard, D., Casanueva, A., Tuffin, M., & Cowan, D. (2010). Extremophiles in biofuel synthesis. Environmental Technology, 31(8–9), 871–888.

    Article  CAS  Google Scholar 

  • Basnet, K. (1993). Solid waste pollution versus sustainable development in high mountain environment: A case study of Sagarmatha National Park of Khumbu region, Nepal. Contributions to Nepalese Studies, 20(1), 131–139.

    Google Scholar 

  • Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19, 1–7.

    Google Scholar 

  • Chaudhary, G., Singh, L. K. & Ghosh, S. (2012). Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresource Technology, 124, 111–118.

    Google Scholar 

  • Connemann, J., & Fischer, J. (1998). Biodiesel in Europe 1998. In International Liquid Biofuels Congress, Curitiba, Brasil.

    Google Scholar 

  • Darici, B., & Ocal, F. M. (2010). The structure of European financial system and financial integration. Energy Education Science And Technology Part B-Social And Educational Studies, 2(3–4), 133–145.

    Google Scholar 

  • Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2009a). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239–2249.

    Article  CAS  Google Scholar 

  • Demirbas, T. (2009b). Overview of bioethanol from biorenewable feedstocks: technology, economics, policy, and impacts. Energy Education Science and Technology Part A, 22, 163–177.

    Google Scholar 

  • Demirbas, M. F. (2009). Biorefineries for biofuel upgrading: a critical review. Applied Energy, 86, S151–S161.

    Google Scholar 

  • Demirbas, A. (2009d). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14–34.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2009e). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4), 923–927.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2010a). Social, economic, environmental and policy aspects of biofuels. Energy Education Science And Technology Part B-Social And Educational Studies, 2(1–2), 75–109.

    Google Scholar 

  • Demirbas, A. H. (2010b). Biofuels for future transportation necessity. Energy education science and technology part a-energy science and research, 26(1), 13–23.

    Google Scholar 

  • Demirbas, A. (2010c). Sub-and super-critical water depolymerization of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(12), 1100–1110.

    Article  CAS  Google Scholar 

  • Demirbas, M. F. (2010). Microalgae as a feedstock for biodiesel. Energy Education Science and Technology Part A-Energy Science and Research, 25(1–2), 31–43.

    Google Scholar 

  • Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280–1287.

    Article  Google Scholar 

  • DemirbaÅŸ, A. (2005). Fuel and combustion properties of bio-wastes. Energy Sources, 27(5), 451–462.

    Google Scholar 

  • DemirbaÅŸ, A. (2008). Production of biodiesel from algae oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(2), 163–168.

    Article  CAS  Google Scholar 

  • Demirbas, A., & Balat, M. (2010). Wastes to energy. Future Energy Sources, 2, 1–63.

    Google Scholar 

  • Demirbas, A. H., & Demirbas, I. (2007). Importance of rural bioenergy for developing countries. Energy Conversion and Management, 48(8), 2386–2398.

    Google Scholar 

  • Demirbas, A., & Karslioglu, S. (2007). Biodiesel production facilities from vegetable oils and animal fats. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 29(2), 133–141.

    Article  CAS  Google Scholar 

  • Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746–1760.

    Google Scholar 

  • Demirbas, M. F., Balat, M., & Balat, H. (2011). Biowastes-to-biofuels. Energy Conversion and Management, 52(4), 1815–1828.

    Google Scholar 

  • El Diwani, G., Attia, N. K., & Hawash, S. I. (2009). Development and evaluation of biodiesel fuel and by-products from jatropha oil. International Journal of Environmental Science and Technology, 6(2), 219–224.

    Article  Google Scholar 

  • FrÄ…c, M., & Ziemiñski, K. (2012). Methane fermentation process for utilization of organic waste. International agrophysics, 26(3).

    Google Scholar 

  • Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28(6), 601–605.

    Google Scholar 

  • Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646–1653.

    Google Scholar 

  • Hauser, V. L., Weand, B. L., & Gill, M. D. (2001). Natural covers for landfills and buried waste. Journal of Environmental Engineering, 127(9), 768–775.

    Article  CAS  Google Scholar 

  • Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), 11206–11210.

    Article  CAS  Google Scholar 

  • Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46.

    Article  CAS  Google Scholar 

  • Karimi, K., Emtiazi, G., & Taherzadeh, M. J. (2006). Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 40(1), 138–144.

    Article  CAS  Google Scholar 

  • Karthika, K., Arun, A. B., & Rekha, P. D. (2012). Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers, 90(2), 1038–1045.

    Article  CAS  Google Scholar 

  • Kemppainen, K., Inkinen, J., Uusitalo, J., Nakari-Setälä, T., & Siika-aho, M. (2012). Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark. Bioresource Technology, 117, 131–139.

    Article  CAS  Google Scholar 

  • Kim, S. B., Kim, J. S., Lee, J. H., Kang, S. W., Park, C., & Kim, S. W. (2011). Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility. Applied Biochemistry and Biotechnology, 164(7), 1183–1191.

    Google Scholar 

  • Kim, J. H., Lee, J. C., & Pak, J. C. (2011). Feasibility of producing ethanol from food waste. Waste Management, 31(9–10), 2121–2125.

    Google Scholar 

  • Kim, S. B., Lee, S. J., Jang, E. J., Han, S. O., Park, C., & Kim, S. W. (2012). Sugar recovery from rice straw by dilute acid pretreatment. Journal of Industrial and Engineering Chemistry, 18(1), 183–187.

    Google Scholar 

  • Kim, S. B., Cui, C., Lee, J. H., Lee, S. J., Ahn, D. J., Park, C., Kim, J. S., & Kim, S. W. (2013a). Rapid analysis of barley straw before and after dilute sulfuric acid pretreatment by photoluminescence. Bioresource technology, 146, 789–793.

    Google Scholar 

  • Kim, S. B., Kim, E., Yoo, H. Y., Kang, M., Kang, S. W., Park, C., Kim, J. S., & Kim, S. W. (2013b). Reutilization of carbon sources through sugar recovery from waste rice straw. Renewable Energy, 53, 43–48.

    Google Scholar 

  • Kim, S. B., Lee, S. J., Lee, J. H., Jung, Y. R., Thapa, L. P., Kim, J. S., Um, Y., Park, C., & Kim, S. W. (2013c). Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnology for Biofuels, 6(1), 109.

    Google Scholar 

  • Koonin, S. E. (2006). Getting serious about biofuels, 435–435.

    Google Scholar 

  • Krawczyk, T. (1996). Biodiesel-alternative fuel makes inroads but hurdles remain. Inform, 7, 801–815.

    Google Scholar 

  • Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J., & Hertz, P. B. (2001). Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology, 80(1), 53–62.

    Google Scholar 

  • Leong, S. Y., Mohamed Kutty, S. R., Malakahmad, A., & Tan, C. K. (2016). Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Management, 47, 84–90.

    Google Scholar 

  • Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J. K., & Ziniu, Yu. (2011). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Management, 31(6), 1316–1320.

    Article  CAS  Google Scholar 

  • Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467.

    Article  CAS  Google Scholar 

  • Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M., & Liang, B. (2009). Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering, 33(5), 1091–1096.

    Article  CAS  Google Scholar 

  • Michaels, Ted. (2007). The 2007 IWSA directory of waste-to-energy plants. Integrated Waste Services Association, 12, 32–45.

    Google Scholar 

  • Monavari, S., Galbe, M., & Zacchi, G. (2009). Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresource Technology, 100(24), 6312–6316.

    Article  CAS  Google Scholar 

  • Nakayama, R.-i., & Imai, M. (2013). Promising ultrasonic irradiation pretreatment for enzymatic hydrolysis of Kenaf. Journal of Environmental Chemical Engineering, 1(4), 1131–1136.

    Article  CAS  Google Scholar 

  • Oliveira, L. S., & Franca, A. S. (2009). From solid biowastes to liquid biofuels. Agriculture Issues and Policies Series, 265.

    Google Scholar 

  • Ozkurt, I. (2009). Qualifying of safflower and algae for energy. Energy Education Science and Technology Part A-Energy Science and Research, 23(1–2), 145–151.

    CAS  Google Scholar 

  • Cho, H. Uk., & Park, J. M. (2018). Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresource Technology, 256, 502–508.

    Google Scholar 

  • Phalan, B. (2009). The social and environmental impacts of biofuels in Asia: an overview. Applied Energy, 86, S21–S29.

    Article  CAS  Google Scholar 

  • Qiul, J., Fan, X., & Zou, H. (2011). Development of biodiesel from inedible feedstock through various production processes. Review Chemistry and Technology of Fuels and Oils, 47(2), 102.

    Google Scholar 

  • Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., & Frederick, W. J. et al. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.

    Google Scholar 

  • Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13(1), 167–178.

    Article  CAS  Google Scholar 

  • Selim, M. Y. E. (2009). Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness. Energy Conversion and Management, 50(7), 1781–1788.

    Google Scholar 

  • Sheppard, D. C., Larry Newton, G., Thompson, S. A., & Savage, S. (1994). A value added manure management system using the black soldier fly. Bioresource Technology, 50(3), 275–279.

    Google Scholar 

  • Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49(5), 1248–1257.

    Google Scholar 

  • Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., & Pacala S. et al. (2009). Beneficial biofuels—the food, energy, and environment trilemma. Science, 325(5938), 270–271.

    Google Scholar 

  • Ulusoy, Y., Arslan, R., & Kaplan, C. (2009). Emission characteristics of sunflower oil methyl ester. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 31(11), 906–910.

    Article  CAS  Google Scholar 

  • Veljković, V. B., Lakićević, S. H., Stamenković, O. S., Todorović, Z. B., & Lazić, M. L. (2006). Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel, 85(17–18), 2671–2675.

    Article  CAS  Google Scholar 

  • Viikari, L., Vehmaanperä, J., & Koivula, A. (2012). Lignocellulosic ethanol: from science to industry. Biomass and Bioenergy, 46, 13–24.

    Article  CAS  Google Scholar 

  • Wang, Y., Shiyi, O., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252(1–2), 107–112.

    Article  CAS  Google Scholar 

  • Wang, F.-Q., Xie, H., Chen, W., Wang, E.-T., Feng-Guang, D., & Song, A.-D. (2013). Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresource Technology, 144, 572–578.

    Article  CAS  Google Scholar 

  • Yang, X., Choi, H. S., Park, C., & Kim, S. W. (2015). Current states and prospects of organic waste utilization for biorefineries. Renewable and Sustainable Energy Reviews, 49, 335–349.

    Google Scholar 

  • Zavrel, M., Bross, D., Funke, M., Büchs, J., & Spiess, A. C. (2009). High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresource Technology, 100(9), 2580–2587.

    Article  CAS  Google Scholar 

  • Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 90(3), 229–240.

    Article  CAS  Google Scholar 

  • Zullaikah, S., Lai, C.-C., Vali, S. R., & Ju, Y.-H. (2005). A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresource Technology, 96(17), 1889–1896.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rojalin Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, T., Panda, J., Senapati, D.K., Rath, C.K., Behera, M., Sahu, R. (2021). Production of Biodiesel from Organic Wastes by Bioconversion. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_24

Download citation

Publish with us

Policies and ethics