Skip to main content

Revalorisation of Agro-Industrial Wastes into High Value-Added Products

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Abstract

Agro-industrial waste represents large economic and environmental problems and is related to a greenhouse gas emissions. However, most of these residues have shown to be a valuable source of bioactive compounds or ingredients that could be used for pharmaceutical, food, cosmetic, and bioenergy industries. The reduction of this waste and the revalorisation of agro-industrial by-products contribute to minimise the ecological impact through bioeconomy or circular economy models. In order to carry out these approaches, extraction techniques play a fundamental role in these processes since they are capable of isolating the compounds of interest but they may apply in a sustainable way. This chapter presents the potential applications of reusing agro-industrial by-products to develop high added value products and the role of these applications in strategies against climate change or in the revaluation of companies. In addition, the main agro-industrial waste from vegetables, fruits, or cereals are described, as well as the main bioactive ingredients detected in these and the main extraction techniques used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aburjai, T., & Natsheh, F. M. (2003). Plants used in cosmetics. Phyther. Research, 17, 987–1000.

    Article  Google Scholar 

  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. Sci: International Journal of Molecular Sciences.

    Book  Google Scholar 

  • Alañón, M. E., Ivanović, M., Gómez-Caravaca, A. M., Arráez-Román, D., & Segura-Carretero, A. (2020). Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. The Arabian Journal of Chemistry, 13, 1685–1701.

    Article  CAS  Google Scholar 

  • Alfano, A., Corsuto, L., Finamore, R., Savarese, M., Ferrara, F., Falco, S., Santabarbara, G., De Rosa, M., & Schiraldi, C. (2018). Valorisation of olive mill wastewater by membrane processes to recover natural antioxidant compounds for cosmeceutical and nutraceutical applications or functional foods. Antioxidants, 7.

    Google Scholar 

  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants.

    Google Scholar 

  • Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16, 295–315.

    Article  Google Scholar 

  • Antunes, S., Freitas, F., Sevrin, C., Grandfils, C., & Reis, M. A. M. (2017). Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source. Bioresource Technology, 227, 66–73.

    Article  CAS  Google Scholar 

  • Aparecida, S., Faria, C., & Bassinello, P. Z. (2012). Nutritional composition of rice bran submitted to different stabilisation procedures. Brazilian Pharmaceutical Sciences, 48, 652–657.

    Google Scholar 

  • Asif, A., Farooq, U., Akram, K., Hayat, Z., Shafi, A., Sarfraz, F., et al. (2016). Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends in Food Science & Technology, 53, 102–112.

    Article  CAS  Google Scholar 

  • Averilla, J. N., Oh, J., Kim, H. J., Kim, J. S., & Kim, J. S. (2019). Potential health benefits of phenolic compounds in grape processing by-products. Food Science and Biotechnology, 28, 1607–1615.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A. A., Siddiqui, M. W., et al. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44, 1866–1874.

    Article  CAS  Google Scholar 

  • Azmir, J., Zaidul, I. S. M. S. M., Rahman, M. M. M., Sharif, K. M. M., Mohamed, A., Sahena, F., Jahurul, M. H. A. H. A., Ghafoor, K., Norulaini, N. A. N. A. N., & Omar, A. K. M. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117, 426–436.

    Google Scholar 

  • Backes, E., Pereira, C., Barros, L., Prieto, M.A., Genena, A.K., Barreiro, M.F.; & Ferreira, I. C. F. R. (2018). Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 113, 197–209.

    Google Scholar 

  • Bajkacz, S., & Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta, 168, 329–335.

    Article  CAS  Google Scholar 

  • Barreira, J. C. M., Arraibi, A. A., & Ferreira, I. C. F. R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science & Technology, 90, 76–87.

    Article  CAS  Google Scholar 

  • Barrera-Arellano, D., Badan-Ribeiro, A. P., & Serna-Saldivar, S. O. (2019). Corn oil: Composition, processing, and utilisation (pp. 593–613). In Corn: Elsevier.

    Book  Google Scholar 

  • Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., Cools, K., Terry, L. A., & Esteban, R. M. (2011). Characterisation of industrial onion wastes (Allium cepa L.): Dietary fibre and bioactive compounds. Plant Foods for Human Nutrition, 66, 48–57.

    Google Scholar 

  • Ben-Othman, S., Jõudu, I., & Bhat, R. (2020). Bioactives from agri-food wastes: Present insights and future challenges, Vol. 25; ISBN 3727313927.

    Google Scholar 

  • Berger, K., Falck, P., Linninge, C., Nilsson, U., Axling, U., Grey, C., et al. (2014). Cereal byproducts have prebiotic potential in mice fed a high-fat diet. Journal of Agricultural and Food Chemistry, 62, 8169–8178.

    Article  CAS  Google Scholar 

  • Bosiljkov, T., Dujmić, F., Cvjetko Bubalo, M., Hribar, J., Vidrih, R., Brnčić, M., et al. (2017). Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food and Bioproducts Processing, 102, 195–203.

    Article  CAS  Google Scholar 

  • Butt, M. S., Tahir-Nadeem, M., Khan, M. K. I., Shabir, R., & Butt, M. S. (2008). Oat: Unique among the cereals. European Journal of Nutrition, 47, 68–79.

    Article  CAS  Google Scholar 

  • Caccamo, M., Valenti, B., Luciano, G., Priolo, A., Rapisarda, T., Belvedere, G., et al. (2019). Hazelnut as ingredient in dairy sheep diet: effect on sensory and volatile profile of cheese. Frontiers in Nutrition, 6, 1–10.

    Article  CAS  Google Scholar 

  • Çam, M., & Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123, 878–885.

    Article  CAS  Google Scholar 

  • Campione, A., Natalello, A., Valenti, B., Luciano, G., Rufino-Moya, P. J., Avondo, M., et al. (2020). Effect of feeding hazelnut skin on animal performance, milk quality, and rumen fatty acids in lactating Ewes. Animals, 10, 588.

    Article  Google Scholar 

  • Caporaso, N., Formisano, D., & Genovese, A. (2018). Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Critical Reviews in Food Science and Nutrition, 58, 2829–2841.

    Article  CAS  Google Scholar 

  • Carus, M., & Dammer, L. (2018). The circular Bioeconomy—concepts, opportunities, and limitations. Industrial Biotechnology, 14, 83–91.

    Article  Google Scholar 

  • Castro-Vargas, H. I., Vivas, D. B., Barbosa, J. O., Medina, S. J. M., Gutiérrez, F. A., & Parada-Alfonso, F. (2019). Bioactive phenolic compounds from the agroindustrial waste of Colombian mango cultivars ‘sugar mango’ and ‘tommy atkins’—An alternative for their use and valorisation. Antioxidants, 8, 1–19.

    Article  CAS  Google Scholar 

  • Cea Pavez, I., Lozano-Sánchez, J., Borrás-Linares, I., Nuñez, H., Robert, P., & Segura-Carretero, A. (2019). Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules, 24, 3108.

    Article  CAS  Google Scholar 

  • Chanioti, S., & Tzia, C. (2018). Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science and Emerging Technologies, 48, 228–239.

    Article  CAS  Google Scholar 

  • Chen, G., Fang, C., Ran, C., Tan, Y., Yu, Q., & Kan, J. (2019). Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products. International Journal of Biological Macromolecules, 130, 903–914.

    Article  CAS  Google Scholar 

  • Chhouk, K., Uemori, C., Wahyudiono, Kanda, H., & Goto, M. (2017). Extraction of phenolic compounds and antioxidant activity from garlic husk using carbon dioxide expanded ethanol. Chemical Engineering and Processing: Process Intensification, 117, 113–119.

    Google Scholar 

  • Chiboub, W., Sassi, A. Ben, Amina, C. M. hame., Souilem, F., El Ayeb, A., Djlassi, B., Ascrizzi, R., Flamini, G., & Harzallah-Skhiri, F. (2019). Valorisation of the green waste from two varieties of fennel and carrot cultivated in tunisia by identification of the phytochemical profile and evaluation of the antimicrobial activities of their essentials oils. Chemistry & Biodiversity, 16.

    Google Scholar 

  • Correddu, F., Lunesu, M. F., Buffa, G., Atzori, A. S., Nudda, A., Battacone, G., et al. (2020). Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals, 10, 1–25.

    Article  Google Scholar 

  • Cui, Q., Liu, J.-Z., Huang, Y.-Y., Wang, W., Luo, M., Wink, M., Fu, Y.-J., & Zu, Y.-G. (2017). Enhanced extraction efficiency of bioactive compounds and antioxidant activity from Hippophae rhamnoides L. by-products using a fast and efficient extraction method. Separation Science and Technology, 52, 1160–1171.

    Google Scholar 

  • D’Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., et al. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production, 168, 716–734.

    Article  Google Scholar 

  • Da Porto, C., & Natolino, A. (2017). Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. The Journal of Supercritical Fluids, 130, 239–245.

    Article  CAS  Google Scholar 

  • Da Porto, C., Decorti, D., & Natolino, A. (2014). Water and ethanol as co-solvent in supercritical fluid extraction of proanthocyanidins from grape marc: A comparison and a proposal. The Journal of Supercritical Fluids, 87, 1–8.

    Article  CAS  Google Scholar 

  • Derrien, M., Aghabararnejad, M., Gosselin, A., Desjardins, Y., Angers, P., & Boumghar, Y. (2018). Optimisation of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT, 93, 79–87.

    Google Scholar 

  • Díaz-Vela, J., Totosaus, A., & Pérez-Chabela, M. L. (2015). Integration of agroindustrial co-products as functional food ingredients: Cactus pear (opuntia ficus indica) flour and pineapple (Ananas comosus) peel flour as fiber source in cooked sausages inoculated with lactic acid bacteria. Journal of Food Processing and Preservation, 39, 2630–2638.

    Article  CAS  Google Scholar 

  • Ebuehi, O. A. T., Anams, C., Gbenle, O. D., & Ajagun-Ogunleye, M. O. (2019). Hydro-ethanol seed extract of Theobroma cacao exhibits antioxidant activities and potential anticancer property. Journal of Food Biochemistry, 43, 1–10.

    Article  CAS  Google Scholar 

  • El Sohaimy, S. (2012). Functional foods and nutraceuticals-modern approach to food science. World Applied Sciences Jornal, 20, 691–708.

    Google Scholar 

  • El-Chichakli, B., Von Braun, J., Lang, C., Barben, D., & Philp, J. (2016). Five cornerstones of a global bioeconomy. Nature, 535, 221–223.

    Article  CAS  Google Scholar 

  • Eller, F. J., Moser, J. K., Kenar, J. A., & Taylor, S. L. (2010). Extraction and analysis of tomato seed oil. Journal of the American Oil Chemists’ Society, 87, 755–762.

    Article  CAS  Google Scholar 

  • Fernández, M. de los Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671–678.

    Google Scholar 

  • Villegas-Aguilar, M. del C., Fernández-Ochoa, Á., Cádiz-Gurrea, M. de la L., Pimentel-Moral, S., Lozano-Sánchez, J., Arráez-Román, D., & Segura-Carretero, A. (2020). Pleiotropic biological effects of dietary phenolic compounds and their metabolites on energy metabolism, inflammation and aging. Molecules, 25, 596.

    Google Scholar 

  • Ferreira, M. S. L., Santos, M. C. P., Moro, T. M. A., Basto, G. J., Andrade, R. M. S., & Gonçalves, É. C. B. A. (2013). Formulation and characterisation of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology, 52, 822–830.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., Drakopoulou, S., Terzakis, S., Georgaki, E., & Manios, T. (2008). Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass and Bioenergy, 32, 155–161.

    Article  CAS  Google Scholar 

  • Friedman, M. (2014). Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. Journal of Agricultural and Food Chemistry, 62, 6025–6042.

    Article  CAS  Google Scholar 

  • Fu, J., Zhang, Y., Hu, Y., Zhao, G., Tang, Y., & Zou, L. (2020). Concise review: Coarse cereals exert multiple beneficial effects on human health. Food Chemistry, 325.

    Google Scholar 

  • Galanakis, C. M. (2013). Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food and Bioproducts Processing, 91, 575–579.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2018). Sustainable recovery and reutilisation of cereal processing by-products; ISBN 9780081022146.

    Google Scholar 

  • Giannuzzo, A. N., Boggetti, H. J., Nazareno, M. A., & Mishima, H. T. (2003). Supercritical fluid extraction of naringin from the peel of Citrus paradisi. Phytochemical Analysis, 14, 221–223.

    Article  CAS  Google Scholar 

  • Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289–299.

    Article  CAS  Google Scholar 

  • Gonzales, G. B., Raes, K., Coelus, S., Struijs, K., Smagghe, G., & Van Camp, J. (2014). Ultra(high)-pressure liquid chromatography-electrospray ionisation-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterisation of flavonoid glycosides from cauliflower waste. Journal of Chromatograph A.

    Google Scholar 

  • González-Montelongo, R., Gloria Lobo, M., & González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry, 119, 1030–1039.

    Article  CAS  Google Scholar 

  • Gordobil, O., Olaizola, P., Banales, J. M., & Labidi, J. (2020). Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities. Molecules, 25, 1131.

    Article  CAS  Google Scholar 

  • Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., et al. (2001). Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. Journal of Agricultural and Food Chemistry, 49, 952–957.

    Article  CAS  Google Scholar 

  • Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterisation of pectin from tomato waste. Food Chemistry, 198, 93–100.

    Article  CAS  Google Scholar 

  • Gunes, R., Palabiyik, I., Toker, O. S., Konar, N., & Kurultay, S. (2019). Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. Journal of Food Engineering, 255, 9–14.

    Article  CAS  Google Scholar 

  • Guo, X., Han, D., Xi, H., Rao, L., Liao, X., Hu, X., et al. (2012). Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate Polymers, 88, 441–448.

    Article  CAS  Google Scholar 

  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. Int. Congr. Save Food!.

    Google Scholar 

  • Hallabo, S. A. S., Helmy, S.A., Elhassaneen, Y., & Shaaban, M. (2018). Utilisation of mango, onion and potato peels as sources of bioactive compounds in biscuits processing. Bioscience Research.

    Google Scholar 

  • He, J.-Z., Shao, P., Liu, J.-H., & Ru, Q.-M. (2012). Supercritical carbon dioxide extraction of flavonoids from pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity. International Journal of Molecular Sciences, 13, 13065–13078.

    Google Scholar 

  • He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., et al. (2016). Optimisation of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76.

    Article  CAS  Google Scholar 

  • Hernández-Alcántara, A. M., Totosaus, A., Pérez-Chabela, M. L. (2016). Evaluation of agro-industrial co-products as source of bioactive compounds: fiber, antioxidants and prebiotic. ACTA Universitatis Cibiniensis, Series E: Food Technology, 20, 3–16.

    Google Scholar 

  • Herrero, M., Sánchez-Camargo, A. del P., Cifuentes, A., & Ibañez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC—Trends in Analytical Chemistry, 71, 26–38.

    Google Scholar 

  • Ishida, K., Kishi, Y., Oishi, K., Hirooka, H., & Kumagai, H. (2015). Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilisation, ruminal fermentation, antioxidant status and oxidative stress in wethers. Animal Science Journal, 86, 260–269.

    Article  CAS  Google Scholar 

  • Ivanović, M., Alañón, M. E., Arráez-Román, D., & Segura-Carretero, A. (2018). Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Research International, 111, 67–76.

    Article  CAS  Google Scholar 

  • Jahurul, M. H. A., Zaidul, I. S. M., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K.-L., Norulaini, N. A. N., Sahena, F., & Mohd Omar, A. K. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173–180.

    Google Scholar 

  • Jr, J. W. E., Ford, N. A., & Lindshield, B. L. (2010). Are the health attributes of lycopene related to its antioxidant function? 483, 229–235.

    Google Scholar 

  • Kamp, A., & Østergård, H. (2016). Environmental sustainability assessment of fruit cultivation and processing using fruit and cocoa residues for bioenergy and compost. Case study from Ghana. Journal of Cleaner Production, 129, 329–340.

    Google Scholar 

  • Kapadia, S., Pudakalkatti, P., & Shivanaikar, S. (2015). Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study. Contemp. Clin. Dent., 6, 496.

    Google Scholar 

  • Kazan, A., Koyu, H., Turu, I. C., & Yesil-Celiktas, O. (2014). Supercritical fluid extraction of Prunus persica leaves and utilisation possibilities as a source of phenolic compounds. The Journal of Supercritical Fluids, 92, 55–59.

    Article  CAS  Google Scholar 

  • Khir, R., & Pan, Z. (2019). Rice. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier, pp. 21–58.

    Google Scholar 

  • Klavins, L., Kviesis, J., Nakurte, I., & Klavins, M. (2018). Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. Lwt, 93, 583–591.

    Article  CAS  Google Scholar 

  • Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology, 67, 150–159.

    Article  CAS  Google Scholar 

  • Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioprocess: Bioresour.

    Google Scholar 

  • Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S., et al. (2019). Valorisation of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box-Behnken design. Journal of Food Science and Technology, 56, 995–1007.

    Article  CAS  Google Scholar 

  • Kushwaha, R., Kumar, V., Vyas, G., & Kaur, J. (2018). Optimisation of Different Variable for Eco-friendly Extraction of Betalains and Phytochemicals from Beetroot Pomace. Waste and Biomass Valorisation, 9, 1485–1494.

    Article  CAS  Google Scholar 

  • Lanzotti, V. (2006). The analysis of onion and garlic. Journal of Chromatography A.

    Google Scholar 

  • Laufenberg, G., & Schulze, N. (2009). A modular strategy for processing of fruit and vegetable wastes into value-added products. In Handbook of Waste Management and Co-Product Recovery in Food Processing; ISBN 9781845697051.

    Google Scholar 

  • Lozano-Sánchez, J., Castro-Puyana, M., Mendiola, J., Segura-Carretero, A., Cifuentes, A., & Ibáez, E. (2014). Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques. International Journal of Molecular Sciences, 15, 16270–16283.

    Article  CAS  Google Scholar 

  • Machado, A. P. D. F., Pasquel-Reátegui, J. L., Barbero, G. F., & Martínez, J. (2015). Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Research International, 77, 675–683.

    Google Scholar 

  • Machado, A. P. D. F., Pereira, A. L. D., Barbero, G. F., & Mart??nez, J. (2017). Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10.

    Google Scholar 

  • Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E. R., & Cho, M. H. (2019). Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition, 59, 611–625.

    Article  CAS  Google Scholar 

  • Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Rimac Brnčić, S. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28–37.

    Article  CAS  Google Scholar 

  • Mattioli, S., Rosignoli, P., D’Amato, R., Fontanella, M. C., Regni, L., Castellini, C., et al. (2020). Effect of feed supplemented with selenium-enriched olive leaves on plasma oxidative Status, mineral profile, and leukocyte DNA damage in growing rabbits. Animals, 10, 274.

    Article  Google Scholar 

  • Mayanga-Torres, P. C., Lachos-Perez, D., Rezende, C. A., Prado, J. M., Ma, Z., Tompsett, G. T., et al. (2017). Valorisation of coffee industry residues by subcritical water hydrolysis: Recovery of sugars and phenolic compounds. The Journal of Supercritical Fluids, 120, 75–85.

    Article  CAS  Google Scholar 

  • Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., & Yada, R. Y. (2018). Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58, 2147–2163.

    Article  CAS  Google Scholar 

  • Mehta, D., Prasad, P., Sangwan, R. S., & Yadav, S. K. (2018). Tomato processing byproduct valorisation in bread and muffin: improvement in physicochemical properties and shelf life stability. Journal of Food Science and Technology, 55, 2560–2568.

    Article  CAS  Google Scholar 

  • Mirzaei-aghsaghali, A., & Maheri-sis, N. (2013). Nutritive value of some AgroIndustrial by-products for ruminants—a review.

    Google Scholar 

  • Nagarajaiah, S. B., & Prakash, J. (2016). Chemical Composition and Bioactivity of Pomace from Selected Fruits. International Journal of Fruit Science, 16, 423–443.

    Article  Google Scholar 

  • Ninčević Grassino, A., Djaković, S., Bosiljkov, T., Halambek, J., Zorić, Z., Dragović-Uzelac, V., et al. (2019). Valorisation of tomato peel waste as a sustainable source for Pectin. Waste and Biomass Valorisation: Polyphenols and Fatty Acids Recovery Using Sequential Extraction.

    Google Scholar 

  • Pagano, I., Sánchez-Camargo, A. del P., Mendiola, J. A., Campone, L., Cifuentes, A., Rastrelli, L., & Ibañez, E. (2018). Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction. Electrophoresis, 39, 1884–1891.

    Google Scholar 

  • Panzella, L. (2020). Natural phenolic compounds for health food and cosmetic applications. Antioxidants, 9, 427.

    Article  CAS  Google Scholar 

  • Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2018). Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, 0–1.

    Google Scholar 

  • Pinto, D., Cádiz-Gurrea, M. de la L., Sut, S., Ferreira, A. S., Leyva-Jimenez, F. J., Dall’Acqua, S., Segura-Carretero, A., Delerue-Matos, C., & Rodrigues, F. (2020) Valorisation of underexploited Castanea sativa shells bioactive compounds recover.ed by Supercritical Fluid Extraction with CO2: A Response Surface Methodology approach. Journal CO2 Util.

    Google Scholar 

  • Pontonio, E., Dingeo, C., Gobbetti, M., & Rizzello, C. G. (2019). Maize milling by-products: From food wastes to functional ingredients through lactic acid bacteria fermentation. Frontiers in Microbiology, 10, 1–14.

    Article  Google Scholar 

  • Poveda, J. M., Loarce, L., Alarcón, M., Díaz-Maroto, M. C., & Alañón, M. E. (2018). Revalorisation of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products, 112, 617–625.

    Article  CAS  Google Scholar 

  • Prakash, L.; Majeed, M. Natural ingredients for anti-ageing skin care. Househ. Pers. Care Today2009, 44–46.

    Google Scholar 

  • Ralla, T., Salminen, H., Edelmann, M., Dawid, C., Hofmann, T., & Weiss, J. (2018). Oat bran extract (Avena sativa L.) from food by-product streams as new natural emulsifier. Food Hydrocoll, 81, 253–262.

    Google Scholar 

  • Rebello, L. P. G., Ramos, A. M., Pertuzatti, P. B., Barcia, M. T., Castillo-Muñoz, N., & Hermosín-Gutiérrez, I. (2014). Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International, 55, 397–403.

    Article  CAS  Google Scholar 

  • Robards, K., Prenzler, P., Ryan, D., & Kamal-Eldin, A. (2009). Oat Oil. In Gourmet and Health-Promoting Specialty Oils; Elsevier, pp. 433–454.

    Google Scholar 

  • Rodriguez-Anton, J. M., Rubio-Andrada, L., Celemín-Pedroche, M. S., & Alonso-Almeida, M. D. M. (2019). Analysis of the relations between circular economy and sustainable development goals. International Journal of Sustainable Development and World Ecology, 26, 708–720.

    Article  Google Scholar 

  • Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). analysis of phenolic composition of byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules, 24.

    Google Scholar 

  • Roth, M., Jekle, M., & Becker, T. (2019). Opportunities for upcycling cereal byproducts with special focus on Distiller’s grains. Trends in Food Science & Technology, 91, 282–293.

    Article  CAS  Google Scholar 

  • Rudra, S. G., Nishad, J., Jakhar, N., & Kaur, C. (2015). Food Industry Waste: Mine of Nutraceuticals. International Journal of Environmental Science and Technology, 4, 205–229.

    Google Scholar 

  • Ruiz-Aceituno, L., García-Sarrió, M.J., Alonso-Rodriguez, B., Ramos, L., & Sanz, M. L. (2016). Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chemistry, 196, 1156–1162.

    Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilisation. Food Saf: Compr. Rev. Food Sci.

    Google Scholar 

  • Sahin, S., Samli, R., Birteks, Z., Tan, A. S., Barba, F. J., Chemat, F., Cravotto, G., & Lorenzo, J. M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22.

    Google Scholar 

  • Saini, A., Panesar, P. S., & Bera, M. B. (2019a). Valorisation of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioprocess: Bioresour.

    Google Scholar 

  • Saini, A., Panwar, D., Ps, P., & Mb, B. (2019b). Bioactive compounds from cereal and pulse processing byproducts and their potential health benefits. Austin Journal of Nutrition & Metabolism, 6, 1–7.

    Google Scholar 

  • Sandoval-Castro, C. J., Valdez-Morales, M., Oomah, B. D., Gutiérrez-Dorado, R., Medina-Godoy, S., & Espinosa-Alonso, L. G. (2017). Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). Journal of Food Science and Technology, 54, 1999–2010.

    Article  CAS  Google Scholar 

  • Sanz-Puig, M., Pina-Pérez, M. C., Criado, M. N., Rodrigo, D., & Martínez-López, A. (2015). Antimicrobial potential of cauliflower, broccoli, and okara byproducts against foodborne bacteria. Foodborne Pathogens and Disease, 12, 39–46.

    Article  Google Scholar 

  • Sauvé, S., Bernard, S., & Sloan, P. (2016). Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environment Development.

    Google Scholar 

  • Senthil Kumar, P., Ramakrishnan, K., Dinesh Kirupha, S., & Sivanesan, S. (2010). Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering, 27, 347–355.

    Article  Google Scholar 

  • Shahsavarpour, M., Lashkarbolooki, M., Eftekhari, M. J., & Esmaeilzadeh, F. (2017). Extraction of essential oils from Mentha spicata L. (Labiatae) via optimized supercritical carbon dioxide process. The Journal of Supercritical Fluids, 130, 253–260.

    Google Scholar 

  • Silva, V., Falco, V., Dias, M.I., Barros, L., Silva, A., Capita, R., Alonso-Calleja, C., Amaral, J.S., Igrejas, G., & Ferreira, I. C. F. R., et al. (2020). Evaluation of the phenolic profile of Castanea sativa mill. By-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants, 9.

    Google Scholar 

  • Singh, A., Kuila, A., Adak, S., Bishai, M., & Banerjee, R. (2012). Utilisation of vegetable wastes for Bioenergy generation. Agricultural Research.

    Google Scholar 

  • Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3, 506–516.

    Article  CAS  Google Scholar 

  • Smuda, S. S., Mohsen, S. M., Olsen, K., & Aly, M. H. (2018). Bioactive compounds and antioxidant activities of some cereal milling by-products. Journal of Food Science and Technology, 55, 1134–1142.

    Article  CAS  Google Scholar 

  • Sohail, M., Rakha, A., Butt, M. S., Iqbal, M. J., & Rashid, S. (2017). Rice bran nutraceutics: A comprehensive review. Critical Reviews in Food Science and Nutrition, 57, 3771–3780.

    Article  CAS  Google Scholar 

  • Spaggiari, M., Calani, L., Folloni, S., Ranieri, R., Dall’Asta, C., & Galaverna, G. (2020). The impact of processing on the phenolic acids, free betaine and choline in Triticum spp. L. whole grains and milling by-products. Food Chemistry, 311, 125940.

    Google Scholar 

  • Sun, H., Li, C., Ni, Y., Yao, L., Jiang, H., Ren, X., et al. (2019). Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity. Carbohydrate Polymers, 206, 557–564.

    Article  CAS  Google Scholar 

  • Suthar, S. (2009). Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Eng: Ecol.

    Google Scholar 

  • Talekar, S., Patti, A. F., Singh, R., Vijayraghavan, R., & Arora, A. (2018). From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops and Product, 112, 790–802.

    Article  CAS  Google Scholar 

  • Thakker, M. R., Parikh, J. K., & Desai, M. A. (2016). Microwave assisted extraction of essential oil from the leaves of Palmarosa: Multi-response optimisation and predictive modelling. Industrial Crops and Products, 86, 311–319.

    Article  CAS  Google Scholar 

  • Thirugnanasambandham, K., & Sivakumar, V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural, 16, 41–48.

    Article  Google Scholar 

  • Thirugnanasambandham, K., Sivakumar, V., & Prakash Maran, J. (2014). Process optimisation and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydrate Polymers, 112, 622–626.

    Article  CAS  Google Scholar 

  • Thomas, M., Badr, A., Desjardins, Y., Gosselin, A., & Angers, P. (2018). Characterisation of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chemistry.

    Google Scholar 

  • Tonini, D., Hamelin, L., & Astrup, T. F. (2016). Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes. GCB Bioenergy, 8, 690–706.

    Article  CAS  Google Scholar 

  • Tonini, D., Albizzati, P. F., & Astrup, T. F. (2018). Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag.

    Google Scholar 

  • Torres-Valenzuela, L. S., Ballesteros-Gómez, A., & Rubio, S. (2020). Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Engineering Review, 12, 83–100.

    Article  CAS  Google Scholar 

  • Trigo, J. P., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. E. (2020). High value-added compounds from fruit and vegetable by-products—Characterisation, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60, 1388–1416.

    Article  CAS  Google Scholar 

  • Tsali, A., & Goula, A. M. (2018). Valorisation of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technology, 340, 194–207.

    Article  CAS  Google Scholar 

  • Turrini, F., Boggia, R., Donno, D., Parodi, B., Beccaro, G., Baldassari, S., et al. (2020). From pomegranate marcs to a potential bioactive ingredient: A recycling proposal for pomegranate-squeezed marcs. European Food Research and Technology, 246, 273–285.

    Article  CAS  Google Scholar 

  • Urbonaviciene, D., & Viskelis, P. (2017). The cis -lycopene isomers composition in supercritical CO 2 extracted tomato by-products. LWT—Journal of Food Science and Technology, 85, 517–523.

    Article  CAS  Google Scholar 

  • Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorisation of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99–105.

    Article  CAS  Google Scholar 

  • Van Hung, P., Yen Nhi, N. H., Ting, L. Y., & Lan Phi, N. T. (2020). Chemical Composition and Biological Activities of Extracts from Pomelo Peel By-products under enzyme and ultrasound-assisted extractions. Journal of Chemistry, 2020, 1–7.

    Article  Google Scholar 

  • Van Quan, N., Thien, D. D., Khanh, T. D., Tran, H. D., & Xuan, T. D. (2019). Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods, 8, 1–12.

    Article  CAS  Google Scholar 

  • Varo, M. A., Jacotet-Navarro, M., Serratosa, M. P., Mérida, J., Fabiano-Tixier, A.-S., Bily, A., & Chemat, F. (2019). green ultrasound-assisted extraction of antioxidant phenolic compounds determined by high performance liquid chromatography from bilberry (Vaccinium Myrtillus L.) Juice By-products. Waste and Biomass Valorisation, 10, 1945–1955.

    Google Scholar 

  • Vergara-Salinas, J. R., Bulnes, P., Zúñiga, M. C., Pérez-Jiménez, J., Torres, J. L., Mateos-Martín, M. L., et al. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61, 6929–6936.

    Article  CAS  Google Scholar 

  • Vural, N., Algan Cavuldak, Ö., & Anlı, R. E. (2018). Multi response optimisation of polyphenol extraction conditions from grape seeds by using ultrasound assisted extraction (UAE). Separation Science and Technology, 53, 1540–1551.

    Article  CAS  Google Scholar 

  • Vural, N., Algan Cavuldak, Ö., Kenar, A., & Akay, M. A. (2020). Green alcoholic solvent and UAE extraction of oleuropein from the Olea europaea L.leaves: Experimental design, optimisation, and comparison with Pharmacopoeia method. Separation Science and Technology, 55, 1813–1828.

    Google Scholar 

  • Wang, Y. (2019). Applications of Rice Bran Oil. In Rice Bran and Rice Bran Oil; Elsevier, pp. 159–168.

    Google Scholar 

  • Wang, M., Huang, B., Fan, C., Zhao, K., Hu, H., Xu, X., et al. (2016). Characterisation and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. International Journal of Biological Macromolecules, 91, 794–803.

    Article  CAS  Google Scholar 

  • Ying, Z., Han, X., & Li, J. (2011). Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry, 127, 1273–1279.

    Article  CAS  Google Scholar 

  • Zeković, Z., Pintać, D., Majkić, T., Vidović, S., Mimica-Dukić, N., Teslić, N., et al. (2017). Utilisation of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Industrial Crops and Products, 99, 49–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de la Luz Cádiz-Gurrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Ochoa, Á. et al. (2021). Revalorisation of Agro-Industrial Wastes into High Value-Added Products. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_14

Download citation

Publish with us

Policies and ethics