Skip to main content

Tectonics and Channel Morpho-Hydrology—A Quantitative Discussion Based on Secondary Data and Field Investigation

  • Chapter
  • First Online:
Structural Geology and Tectonics Field Guidebook — Volume 1

Part of the book series: Springer Geology ((SGFG))

Abstract

Rivers and channels are extremely sensitive in changing their grades, base levels and degree of meandering. We review a number of morpho-tectonic and hydrological indicators along with minor-scale landforms. It explains the tectonic effect on river channel and the landscape topography related with landform deformation. Such indicators are closely associated with deflection zone of (backthrust) tilting, slope and weak zone alteration, and change in hydrological parameters, e.g., velocity, discharge, stream power and shear stress. The indicators also include the aggradation as well as erosional landscape in minor-scale. We decipher 30 geomorphic indices in assessing the impact of tectonics in channel morphology from three study sites: the North East foreland basin of North Bengal, the Singbhum Shear Zone (SSZ) and the Janauri–Chandigarh anticline. Analyses of morpho-hydrological parameters are also applicable through statistical techniques such as Analytical Hierarchy Process (AHP) and the Technique for Order of Preference is done by Similarity Ideal Solution (TOPSIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreani, L., Stanek, K., Gloaguen, R., Krentz, O., & Domínguez-González, L. (2014). DEM-based analysis of interactions between tectonics and landscapes in the ore mountains and eger rift (East Germany and NW Czech Republic). Remote Sensing, 6, 7971–8001. https://doi.org/10.3390/rs6097971.

    Article  Google Scholar 

  • Ayaz, S., Biswas, M., & Dhali, K. (2018). Morphotectonic analysis of alluvial fan dynamics: Comparative study in spatio-temporal scale of Himalayan foothill, India. Arabian Journal of Geosciences, 11(41), 1–16. https://doi.org/10.1007/s12517-017-3308-2.

    Article  Google Scholar 

  • Bisaria, B. K. (1980). Report on geomorphological mapping of a part of the foothills of Darjeeling Himalayas. West Bengal, Geological survey of India report, 1–16.

    Google Scholar 

  • Biswas, M., & Dhara, P. (2019). Correction to: Evolutionary characteristics of meander cut-off—A hydro-morphological study of the Jalangi River, West Bengal, India. Arabian Journal of Geosciences, 12, 739. https://doi.org/10.1007/s12517-019-4971-2.

    Article  Google Scholar 

  • Biswas, M., & Banerjee, P., (2018). Bridge construction and river channel morphology—A comprehensive study of flow behavior and sediment size alteration of the River Chel, India. Arabian Journal of Geosciences, 11. https://doi.org/10.1007/s12517-018-3789-7.

  • Biswas, M. (2015). Impact of neotectonism in the discussion of geomorphological processes as a feedback system: North Bengal Foothills, West Bengal. GSTF Journal of Geological Sciences, 2. https://doi.org/10.5176/2335-6774_2.1.22.

  • Biswas, M., & Biswas, A. (2015). GIS based semi-quantitative morphological analysis of Kankuram Basin, Ghatsila. International Research Journal of Natural and Applied Sciences, 2(3), 79–114.

    Google Scholar 

  • Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebraska. Geological Survey Professional Paper 422-D, Washington, pp. D2–D41.

    Google Scholar 

  • Brookfield, M. E. (1998). The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards. Geomorphology, 22(3–4), 285–312. https://doi.org/10.1016/S0169-555X(97)00082-2.

    Article  Google Scholar 

  • Brzezińska-Wójcik, T., & Gawrysiak, L. (2010). Neotectonic mobility of the Roztocze region, Ukrainian part, Central Europe: Insights from morphometric studies. Annales Societatis Geologorum Poloniae, 80.

    Google Scholar 

  • Bull, W. B. (2007). Tectonic geomorphology of mountains: A new approach to paleoseismology (p. 328). Oxford: Wiley.

    Book  Google Scholar 

  • Bull, W. B., & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. Geomorphology in Arid Regions. In D. O. Doehring (Ed.), Proceedings of the Eight Annual Geomorphology Symposium (pp. 115–138). Binghamton, NY: State University of New York at Binghamton.

    Google Scholar 

  • Chakrabarti, C., Mukhopadhyay, D., & Poddar, B. C. (2012). Geomorphology in relation to tectonics: A case study from the eastern Himalayan foothills of West Bengal, India. Quaternary International, 298, 80–92. https://doi.org/10.1016/j.quaint.2012.12.020.

    Article  Google Scholar 

  • Chen, Y., Sung, Q., Chen, C., & Jean, J. (2006). Variations in tectonic activities of the central and southwestern foothills, Taiwan, Inferred from River Hack Profiles. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(3), 563–578.

    Google Scholar 

  • Chen, Y. C. (2004). Morphotectonic features of Taiwan mountain belt based on hypsometric integral, topographic fractals and SL index. (Ph.D. Thesis) Institute of Earth Sciences, National Cheng Kung University p. 129.

    Google Scholar 

  • Chen, Y. C., Sung, Q. C., & Cheng, K. Y. (2003). Along-strike variations of morphotectonic features in the western Foothills of Taiwan: Tectonic implications based on stream gradient and hypsometric analysis. Geomorphology, 56, 109–137.

    Article  Google Scholar 

  • Charlton, Ro. (2008). Fundamentals of Fluvial Geography. Routledge, London and New York: Taylor and Francis Group.

    Google Scholar 

  • Chorley, R. (1971). The drainage basin as the fundamental geomorphic unit. In R. Chorley (Ed.), Introduction to fluvial processes (pp. 30–32). London: Methuen and Co. Ltd.

    Google Scholar 

  • Claudio, B. (2013). Geology and geomorphology. The soil of Italy. pp. 39–56. https://doi.org/10.1007/978-94-007-5642-7_3.

  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geological Society of America Bulletin, 106, 571–581.

    Article  Google Scholar 

  • Delcaillau, B., Carozza, J. M., & Laville, E. (2006). Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India. Geomorphology, 76(3–4), 241–256. https://doi.org/10.1016/j.geomorph.2005.11.005.

  • Dutta, D, & Mukherjee, S. (2021). Introduction to Structural Geology and Tectonics Field Guidebook—Volume 1. In S. Mukherjee (Ed.), Structural Geology and Tectonics Field Guidebook—Volume 1. Switzerland AG: Springer. Cham. pp. xi-xvi. ISBN: 978-3-030-60142-3.

    Google Scholar 

  • Ghosh, P. K., & Ghosh, P. C. (1980). Report on the preliminary investigation of dolomite in Jainti Area, Jalpaiguri District, West Bengal (Progress report for The Field Secession). Geological Survey of India.

    Google Scholar 

  • Ghosh, P. K. (1968). Investigation of dolomite in the Mahakal Hill Area, near Jainti, Jalpaiguri District, West Bengal (Progress report for The Field Secession). Geological Survey of India.

    Google Scholar 

  • Gloaguen, R., Marpu, P. R., & Niemeyer, I. (2007). Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear Processes in Geophysics, 14, 131–138.

    Article  Google Scholar 

  • Goswami, C., Mukhopadhyay, D., & Poddar, B. C. (2012). Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas. Frontiers of Earth Science, 6(1), 29–38. https://doi.org/10.1007/s11707-012-0297-z.

    Article  Google Scholar 

  • Guba, I., & Glennie, K. (1998). Geology and geomorphology. In S. A. Ghazanfar, M. Fisher (Eds.), Vegetation of the Arabian Peninsula (Vol. 25, pp. 39–62). Dordrecht. Geobotany: Springer. https://doi.org/10.1007/978-94-017-3637-4_3.

  • Gupta, A., & Basu, A. (1985). Structural evolution of Precambrians in parts of North Singhbhum, Bihar. The Geological Survey of India, 113(3), 13–24.

    Google Scholar 

  • Gupta, A., Basu, A., & Ghosh, P. K. (1980). The Proterozoic ultramafic and mafic lavas and tuffs of the Dalma greenstone belt, Singhbum, eastern India. Cnadian Journal of Earth Sciences, 17, 210–231. https://doi.org/10.1139/e80-017.

    Article  Google Scholar 

  • Hack, J. T. (1973). Stream profile analysis and stream gradient index. Journal of Research of the United States Geological Survey, 1(4), 421–429.

    Google Scholar 

  • Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. (Geological Survey Professional Paper) 294–B, 45–95.

    Google Scholar 

  • Hamdouni, R. E., Irigaray, C., Fernandez, T., Chacón, J., & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology 96, 150–173.

    Google Scholar 

  • Hare, P. H., & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In M. Morisawa & J. T. Hack (Eds.), Tectonic geomorphology (pp. 75–104). Boston: Allen and Unwin.

    Google Scholar 

  • Harmar, O. P., & Clifford, N. J. (2007). Geomorphological explanation of the long profile of the Lower Mississippi River. Geomorphology, 84, 222–240.

    Article  Google Scholar 

  • Hwang, C. L., Lai, Y.-J., & Liu, T. Y. (1993). A new approach for multiple objective decision making. Computers and Operations Research, 20, 889–899. https://doi.org/10.1016/0305-0548(93)90109-V.

  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. New York: Springer. http://dx.doi.org/10.1007/978-3-642-48318-9.

  • Javed, N. Malik, C. Mohanty. (2007). Active tectonic influence on the evolution of drainage and landscape: Geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India. Journal of Asian Earth Sciences 29, (5-6):604–618

    Google Scholar 

  • Kale, V. S., Sengupta, S., Achyuthanc, H., & Jaiswald, K. M. (2014). Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology, 227(15), 153–165.

    Article  Google Scholar 

  • Keller, E. A., & Pinter, N. (2002). Active tectonics: Earthquakes, uplift, and landscape (2nd ed., pp. 1–362). New Jersey: Prentice Hall.

    Google Scholar 

  • Keller, E. A. (1986). Investigation of active tectonics: use of surficial earth processes. In R. E. Wallace (Ed.), Active tectonics, studies in geophysics (pp. 136–147). Washington, DC: National Academy Press.

    Google Scholar 

  • Kirby, E., & Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29(5), 415–418.

    Google Scholar 

  • Lee, C., & Tsai, L. L. (2009). A quantitative analysis for geomorphic indices of longitudinal river profile: A case study of the Choushui River, Central Taiwan. Environmental Earth Sciences, 1549–1558.

    Google Scholar 

  • Magar, P. P., & Magar, N. P. (2016). Application of Hack’s stream gradient index (SL Index) to longitudinal profiles of the rivers flowing across Satpura-Purna Plain, Western Vidarbha, Maharashtra. Journal of Geomorphology, 4, 65–72.

    Google Scholar 

  • Mahmood, S. A., & Gloaguen, R. (2012). Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3(4), 407–428.

    Article  Google Scholar 

  • Mahmood, S. A., & Gloaguen, R. (2011). Fractal measures of drainage network to investigate surface deformation from remote sensing data: A paradigm from HinduKush (NE-Afghanistan). Journal of Mountain Science, 8, 641–654.

    Article  Google Scholar 

  • Malik, J. N., Shah, A. A., Sahoo, A. K., Puhan, B., Banerjee, C., Shinde, D. P., et al. (2010). Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India. Tectonophysics, 483(3), 327–343. https://doi.org/10.1016/j.tecto.2009.10.028.

    Article  Google Scholar 

  • Maple, R. T., & Talwani, P. (1993). Evidence of possible tectonic upwarping along the South Carolina coastal plain from an examination of river morphology and elevation data. Geology, 21(7), 651–654. https://doi.org/10.1130/0091-7613(1993)021%3C0651:EOPTUA%3E2.3.CO;2.

    Article  Google Scholar 

  • Merritts, D., & Vincent, K. R. (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino Triple Junction region, Northern California. Geological Society of America Bulletin, 110, 1373–1388.

    Article  Google Scholar 

  • Miall, A. D. (1977). A review of the braided river depositional environment. Earth Science Review, 13, 1–62.

    Article  Google Scholar 

  • Mitra, S. K. (1985). Investigation of dolomite in the BajeKhola block and other areas around Jainti, Jalpaiguri District, West Bengal (Progress report for The Field Secession 1967–68). Geological Survey of India.

    Google Scholar 

  • Mitra, S. K. (1983). Report on reconnaissance survey of the Jainti Dolomite Belt, Jalpaiguri District, West Bengal (Progress report for The Field Secession). Geological Survey of India.

    Google Scholar 

  • Mukherjee, S., Carosi, R., van der Beek, P. A., Mukherjee, B. K., Robinson, D. M. (2015). Tectonics of the Himalaya: An introduction. In S. Mukherjee, R. Carosi, P. van der Beek, B. K. Mukherjee, D. Robinson (Eds.), Geological society (Vol. 412, pp. 1–3). London: London, Special Publications.

    Google Scholar 

  • Mukherjee, S. (2013). Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. International Journal of Earth Sciences, 102, 1851–1870.

    Article  Google Scholar 

  • Mukherjee, S., Mukherjee, B., & Thiede, R. (2013). Geosciences of the Himalaya-Karakoram-Tibet Orogen. International Journal of Earth Sciences, 102, 1757–1758.

    Article  Google Scholar 

  • Mukherjee, S. (2012). Tectonic implications and morphology of trapezoidal mica grains from the Sutlej section of the Higher Himalayan Shear Zone, Indian Himalaya. The Journal of Geology, 120, 575–590.

    Article  Google Scholar 

  • Mukherjee, S. (2015). A review on out-of-sequence deformation in the Himalaya. In S. Mukherjee, R. Carosi, P. van der Beek, B.K. Mukherjee, D. Robinson (Eds.), Tectonics of the Himalaya. Geological society (Vol. 412, pp. 67–109), London: Special Publications. https://doi.org/10.1144/sp412.13.

  • Mullick, M., & Mukhopadhyay, D. (2011). An analysis of GPS-derived velocities in the Bengal basin and the neighbouring active deformation zones. Current Science, 101, 423–426.

    Google Scholar 

  • Nakata, T. (1989). Active faults of the Himalaya of India and Nepal. Geological Society of America Special Paper, 232, 243–264. https://doi.org/10.1130/SPE232-243.

    Article  Google Scholar 

  • Noss, C., & Larke, A. (2016). Roughness, resistance, and dispersion: Relationships in small streams. Water Resources Research, AGU, 52(4), 2802–2821.

    Google Scholar 

  • Paul, A., & Biswas, M. (2019). Changes in river bed terrain and its impact on flood propagation – a case study of River Jayanti, West Bengal, India. Geomatics, Natural Hazards and Risk, 10(1), 1928–1947. https://doi.org/10.1080/19475705.2019.1650124.

    Article  Google Scholar 

  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral and geomorphic area—Altitude analysis. Geological Society of America Bulletin, 82, 1079–1084. http://dx.doi.org/10.1130/0016-606(1971)82[1079:ERHIAG]2.0.CO;2.

  • Pinter, N., & Keller, E. A. (1995). Geomorphological analysis of neotectonic deformation, northern Owens Valley, California. GeolRundsch, 84, 200–212.

    Google Scholar 

  • Raina, V. K., & Saha, S. S. (1970). Investigation of the dolomite deposits in the hathipotha area of Jainti, district, Jalpaiguri, West Bengal. Geological Survey of India. UE, 5831, 1–24.

    Google Scholar 

  • Ramírez-Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23, 317–332.

    Article  Google Scholar 

  • Ray, K. K. (1990). The dalmavolcanics—A Precambrian analogue of the Mesozoic-Cenozoic suture. Group discussion on suture zones, young and old. Geological Survey of India, 17–21.

    Google Scholar 

  • Rhea, S. (1989). Evidence of uplift near Charleston, South Carolina. Geology, 17(4), 311–315. https://doi.org/10.1130/0091-7613(1989)017%3C0311:EOUNCS%3E2.3.CO;2.

    Article  Google Scholar 

  • Saha, A. K. (1994). Crustal evolution of Singhbhum—North Orissa, Eastern India. Memoirs of the Geological Survey of India, 27, 341.

    Google Scholar 

  • Sajadian, M., Pourkermani, M., Qorashi, M., & Moghaddas, N. H. (2015). The analysis of transverse topographic symmetry factor (T Index) in the Chekene-Mazavand, North East Iran. Open Journal of Geology, 05, 809–820. https://doi.org/10.4236/ojg.2015.511069.

    Article  Google Scholar 

  • Sarkar, S., & Saha, A. (1963). On the occurrence of two intersecting Pre-Cambrian orogenic belts in Singhbhum and adjacent areas. Geological Magazine, 100(1), 69–92. https://doi.org/10.1017/S0016756800055060.

    Article  Google Scholar 

  • Schumm, S. A., & Khan, H. R. (1972). Experimental study of channel patterns. Geological Society of America Bulletin, 83(1), 755–770.

    Google Scholar 

  • Schumm, S. A. (1956). The evolution of drainage systems and slopes in bad lands at Perth, Amboi, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.

    Article  Google Scholar 

  • Silva, P. G., Goy, J. L., Zazo, C., & Azcárate, T. (2003). Faulth-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225. https://doi.org/10.1016/S0169-555X(02)00215-5.

    Article  Google Scholar 

  • Singh, I. B., Srivastava, P., Sharma, S., et al. (1999). Upland interfluve (Doab) deposition: Alternative model to muddy over bank deposits. Facies, 40, 197. https://doi.org/10.1007/BF02537474.

    Article  Google Scholar 

  • Sinha, S. K., & Parker, G. (1996). Causes of concavity in longitudinal profiles of rivers. Water Resources Research, 32, 1417–1428.

    Article  Google Scholar 

  • Snyder, N., Whipple, K., Tucker, G., & Merritts, D. (2000). Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112(8), 1250–1263.

    Article  Google Scholar 

  • Sonam, & Jain, V. (2017). Geomorphic effectiveness of a long profile shape and the role of inherent geological controls in the Himalayan hinterland area of the Ganga River basin, India. Geomorphology, 1–51. https://doi.org/10.1016/j.geomorph.2017.12.022.

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117–1142.

    Article  Google Scholar 

  • Takieh, E., Ghorashi, M., & Rezaie, F. (2015). The Transverse Topographic Symmetry Factor of Darakeh Stream in the North Tehran, Iran. Open Journal of Geology, 5, 770–779. https://doi.org/10.4236/ojg.2015.511066.

    Article  Google Scholar 

  • Tandon, S. K., Sinha, R., Gibling, M. R., Dasgupta, A. S., & Ghazanfari, P. (2008). Late Quaternary evolution of the Ganga Plains: myths and misconceptions, recent developments and future directions. Golden Jubilee Memoir of the Geological Society of India, 66, 259–299.

    Google Scholar 

  • Thakur, V., Jayangondaperumal, R., & Suresh, N. (2009). Late Quaternary-Holocene fold and landform generated by morphogenic earthquakes in Chandigrh anticlinal ridge in Punjab Sub Himalayas. Himalayan Geology, 20(2), 103–113.

    Google Scholar 

  • Vanlaningham, S., Meigs, A., & Goldfinger, C. (2006). The effects of rock uplift and rock resistance on river morphology in a subduction zone forearc. Earth Surface Processes and Landforms, 31, 1257–1279.

    Article  Google Scholar 

  • Whipple, K., Wobus, C., Crosby, B., Kirby, E., & Sheenan, D. (2007). New tools for quantitative geomorphology: Extracting and interpretation of stream profiles from digital topographic data. Boulder, USA: GSA Annual Meeting.

    Google Scholar 

  • Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., … & Sheehan, D. (2006). (2006). Tectonics from topography: procedures, promise, and pitfalls. In: Tectonics, climate, and landscape evolution; Special Paper Geological Society of America, 398, 55–74.

    Google Scholar 

  • Yoon, K. (1987). Reconciliation among discrete compromise situations. Journal of Operational Research Society, 38, 277–286. https://doi.org/10.1057/jors.1987.44.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Geography, Presidency University, Kolkata. We extend our sincere thanks to Dr.Soumyajit Mukherjee (IIT Bombay) for providing multiple rounds of review. We would also like to render our thanks to Edison David, for helping us during fieldwork. Thanks to Marion Schneider, Annett Buettener, Boopalan Renu, Alexis Vizcaino, Doerthe Mennecke-Buehler and the proofreading team (Springer). Dutta and Mukherjee (2021) encapsulate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mery Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, M., Paul, A., Jamal, M. (2021). Tectonics and Channel Morpho-Hydrology—A Quantitative Discussion Based on Secondary Data and Field Investigation. In: Mukherjee, S. (eds) Structural Geology and Tectonics Field Guidebook — Volume 1. Springer Geology(). Springer, Cham. https://doi.org/10.1007/978-3-030-60143-0_16

Download citation

Publish with us

Policies and ethics