Skip to main content

Endothelial Dysfunction as a Primary Consequence of SARS-CoV-2 Infection

  • Chapter
  • First Online:
Clinical, Biological and Molecular Aspects of COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1321))

Abstract

A number of different viral species are known to have effects on the endothelium. These include dengue, Ebola, Marburg, Lassa fever, yellow fever and influenza viruses, cytomegalovirus and coronaviruses. There are currently seven human endemic coronaviruses, all of which cause respiratory diseases and bind to receptors found within the endothelium. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) is highly infectious. Like its predecessor, SARS-CoV, it binds to angiotensin-converting enzyme-2 (ACE-2), which is expressed in many cell types, particularly in the lung, including endothelial cells. The initiation of a cytokine storm by the virus along with infection of endothelial cells leads to apoptosis and structural and functional changes that attenuate vascular integrity in many organs including the lungs, heart, liver and kidney. Endothelial damage also enhances the coagulation pathway leading to thrombus formation in major vessels and capillaries. Infection with SARS-CoV-2 has an adverse outcome for individuals with particular comorbid diseases, e.g. hypertension, obesity, type 2 diabetes and cardiovascular disease. It is possible that this is due to the presence of pre-existing endothelial dysfunction and systemic inflammation in subjects with these diseases. Therapies for COVID-19 that target the endothelium, the inflammatory response and the coagulation pathway are currently under trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Estola T (1970) Coronaviruses, a new group of animal RNA viruses. Avian Dis 14:330–336

    Article  CAS  PubMed  Google Scholar 

  2. Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M et al (1998) Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt HR, Becker S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976

    Article  CAS  PubMed  Google Scholar 

  4. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820

    Article  CAS  PubMed  Google Scholar 

  5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71:762–768

    Article  CAS  PubMed  Google Scholar 

  7. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z (2020) Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 35:1545–1549

    Article  PubMed  PubMed Central  Google Scholar 

  8. WHO (2020) WHO Coronavirus Disease (COVID-19) Dashboard [Online]. Available: https://covid19.who.int/. Accessed 23rd July 2020

  9. Perlman S, Dandekar AA (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 5:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang S, Hillyer C, Du L (2020) Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 41:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brevetti G, Schiano V, Chiariello M (2008) Endothelial dysfunction: a key to the pathophysiology and natural history of peripheral arterial disease? Atherosclerosis 197:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klein D, Hurley LB, Quesenberry JC (1999) Sidney S (2002) Do protease inhibitors increase the risk for coronary heart disease in patients with HIV-1 infection? J Acquir Immune Defic Syndr 30:471–477

    Article  Google Scholar 

  15. Wang T, Green LA, Gupta SK, Kim C, Wang L, Almodovar S et al (2014) Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS One 9:e91063. https://doi.org/10.1371/journal.pone.0091063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang C-H, Huang Y, Issekutz AC, Griffith M, Lin K-H, Anderson R (2002) Interleukin-1α released from epithelial cells after adenovirus type 37 infection activates intercellular adhesion molecule 1 expression on human vascular endothelial cells. J Virol 76:427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fourie C, Van Rooyen J, Pieters M, Conradie K, Hoekstra T, Schutte A (2011) Is HIV-1 infection associated with endothelial dysfunction in a population of African ancestry in South Africa? Cardiovasc J Afr 22:134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arildsen H, Sorensen KE, Ingerslev JM, Ostergaard LJ, Laursen AL (2013) Endothelial dysfunction, increased inflammation, and activated coagulation in HIV-infected patients improve after initiation of highly active antiretroviral therapy. HIV Med 14:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Van Vonderen MG, Hassink EA, Van Agtmael MA, Stehouwer CD, Danner SA, Reiss P et al (2009) Increase in carotid artery intima-media thickness and arterial stiffness but improvement in several markers of endothelial function after initiation of antiretroviral therapy. J Infect Dis 199:1186–1194

    Article  PubMed  CAS  Google Scholar 

  20. Hemmat N, Ebadi A, Badalzadeh R, Memar MY, Baghi HB (2018) Viral infection and atherosclerosis. J Clin Microbiol Infect Dis 37:2225–2233

    Article  Google Scholar 

  21. Popović M, Smiljanić K, Dobutović B, Syrovets T, Simmet T, Isenović ERJJOT et al (2012) Human cytomegalovirus infection and atherothrombosis. J Thromb Thrombolysis 33:160–172

    Article  PubMed  CAS  Google Scholar 

  22. Peretz A, Azrad M, Blum A (2019) Influenza virus and atherosclerosis. QJM 112:749–755

    Article  CAS  PubMed  Google Scholar 

  23. Basler CF (2017) Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 39:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldmann H, Bugany H, Mahner F, Klenk H-D, Drenckhahn D, Schnittler HJ (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70:2208–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ter Meulen J, Sakho M, Koulemou K, Magassouba NF, Bah A, Preiser W et al (2004) Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis 190:1821–1827

    Article  PubMed  Google Scholar 

  26. Rastogi M, Sharma N, Singh SK (2016) Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 13:131–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7:304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

    Article  CAS  PubMed  Google Scholar 

  28. Noronha L, Zanluca C, Azevedo ML, Luz KG, Santos CN (2016) Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz 111:287–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383:120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, Van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R et al (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT et al (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964

    Article  PubMed  CAS  Google Scholar 

  36. Zhao M, Wang M, Zhang J, Ye J, Xu Y, Wang Z et al (2020) Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother 127:110230. https://doi.org/10.1016/j.biopha.2020.110230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong M, Jiang Y, Xia D, Xiong Y, Zheng Q, Chen F et al (2020) Elevated serum endothelial cell adhesion molecules expression in COVID-19 patients. J Infect Dis:jiaa349. https://doi.org/10.1093/infdis/jiaa349

  38. Escher R, Breakey N, Lämmle BJTR (2020) Severe COVID-19 infection associated with endothelial activation. Thromb Res 190:62. https://doi.org/10.1016/j.thromres.2020.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mezoh G, Crowther NJ (2019) Deciphering endothelial dysfunction in the HIV-infected population. Adv Exp Med Biol 1134:193–215

    Article  CAS  PubMed  Google Scholar 

  40. Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424

    Article  CAS  PubMed  Google Scholar 

  41. Munro JM (1993) Endothelial-leukocyte adhesive interactions in inflammatory diseases. Eur Heart J 14:72–77

    PubMed  Google Scholar 

  42. Koraka P, Murgue B, Deparis X, Van Gorp EC, Setiati TE, Osterhaus AD et al (2004) Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity. J Med Virol 72:445–450

    Article  CAS  PubMed  Google Scholar 

  43. Cardier JE, Rivas B, Romano E, Rothman AL, Perez-Perez C, Ochoa M et al (2006) Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 13:335–340

    Article  CAS  PubMed  Google Scholar 

  44. Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T (2004) Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol 24:34–40

    Article  CAS  PubMed  Google Scholar 

  45. Nizzoli ME, Merati G, Tenore A, Picone C, Consensi E, Perotti L et al (2020) Circulating endothelial cells in COVID-19. Am J Hematol 95:E187–E188. https://doi.org/10.1002/ajh.25881

    Article  CAS  PubMed  Google Scholar 

  46. Khider L, Gendron N, Goudot G, Chocron R, Hauw-Berlemont C, Cheng C et al (2020) Curative anticoagulation prevents endothelial lesion in COVID-19 patients. J Thromb Haemost. https://doi.org/10.1111/jth.14968

  47. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM et al (2005) Circulating endothelial cells. Thromb Haemost 93:228–235

    Article  CAS  PubMed  Google Scholar 

  48. López M, Vispo E, San Román J, Herrero D, Peris A, Corral A et al (2012) High risk of endothelial dysfunction in HIV individuals may result from deregulation of circulating endothelial cells and endothelial progenitor cells. AIDS Res Hum Retrov 28:656–659

    Article  Google Scholar 

  49. Liu J, Li S, Liu J, Liang B, Wang X, Wang H et al (2020) Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55:102763. https://doi.org/10.1016/j.ebiom.2020.102763

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang C, Wu Z, Li J-W, Zhao H, Wang GQ (2020) The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents 55:105954. https://doi.org/10.1016/j.ijantimicag.2020.105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Teuwen L-A, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol 20:389–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X et al (2020) High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 46:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG et al (2020) Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ 369:m1996. https://doi.org/10.1136/bmj.m1996

    Article  PubMed  PubMed Central  Google Scholar 

  54. Atkins JL, Masoli JA, Delgado J, Pilling LC, Kuo C-L, Kuchel GA et al (2020) Preexisting comorbidities predicting COVID-19 and mortality in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci:glaa183. https://doi.org/10.1093/gerona/glaa183

  55. Onder G, Rezza G, Brusaferro S (2020) Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. https://doi.org/10.1001/jama.2020.4683

  56. Davies MA (2020) HIV and risk of COVID-19 death: a population cohort study from the Western Cape Province, South Africa. medRxiv:20145185. https://doi.org/10.1101/2020.07.02.20145185

  57. Li X, Sun X, Carmeliet P (2019) Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 30:414–433

    Article  CAS  PubMed  Google Scholar 

  58. Donath MY, Meier DT, Böni-Schnetzler M (2019) Inflammation in the pathophysiology and therapy of cardiometabolic disease. Endocr Rev 40:1080–1091

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X et al (2018) Research progress on the relationship between atherosclerosis and inflammation. Biomol Ther 8:80. https://doi.org/10.3390/biom8030080

    Article  CAS  Google Scholar 

  60. Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E (2020) Atherosclerosis as pathogenetic substrate for Sars-Cov-2 cytokine storm. J Clin Med 9:E2095. https://doi.org/10.3390/jcm9072095

    Article  CAS  PubMed  Google Scholar 

  61. Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J et al (2017) Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep 7:9110. https://doi.org/10.1038/s41598-017-09536-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson RM, Vinetz JM (2020) Dexamethasone in the management of COVID-19. BMJ 370:m2648. https://doi.org/10.1136/bmj.m2648

    Article  PubMed  Google Scholar 

  63. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J (2020) Tocilizumab treatment in COVID-19: a single center experience. J Med Virol 92:814–818

    Article  CAS  PubMed  Google Scholar 

  64. Xu X, Han M, Li T, Sun W, Wang D, Fu B et al (2020) Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 117:10970–10975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morena V, Milazzo L, Oreni L, Bestetti G, Fossali T, Bassoli C et al (2020) Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur J Intern Med 76:36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M et al (2020) Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 395:1407–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee KC, Sewa DW, Phua GC (2020) Potential role of statins in COVID-19. Int J Infect Dis 96:615–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fedson D, Opal S, Rordam OM (2020) Treating patients with severe COVID-19 infection. mBio 11:e00398–e00320. doi:https://doi.org/10.1128/mBio.00398-20

  69. Danser AHJ, Epstein M, Batlle D (2020) Renin-angiotensin system blockers and the COVID-19 pandemic. At present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 75:1382–1385

    Article  CAS  PubMed  Google Scholar 

  70. Pons S, Fodil S, Azoulay E, Zafrani L (2020) The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care 24:353. https://doi.org/10.1186/s13054-020-03062-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mezoh, G., Crowther, N.J. (2021). Endothelial Dysfunction as a Primary Consequence of SARS-CoV-2 Infection. In: Guest, P.C. (eds) Clinical, Biological and Molecular Aspects of COVID-19. Advances in Experimental Medicine and Biology(), vol 1321. Springer, Cham. https://doi.org/10.1007/978-3-030-59261-5_3

Download citation

Publish with us

Policies and ethics