Skip to main content

Adaptation of the Euhalophyte Suaeda salsa to High-Salinity Conditions

From Seed Germination to Seed Formation

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Halophytes can complete their lifecycles in natural environments with high levels of salt (200 mM NaCl or more). Therefore, halophytes represent excellent sources of salt-tolerant genes for use in traditional crops to improve the efficiency of agriculture in saline-alkali environments. Here, we review the latest information about Suaeda salsa, an especially promising genetic resource. This typical euhalophyte has succulent leaves and grows in saline habitats in inland and intertidal zones. S. salsa produces dimorphic seeds (black and brown seeds) on the same plant under natural growth conditions. These seeds have different germination rates and salt-tolerant levels, making them excellent models for studying the mechanisms underlying salt adaption. S. salsa plants are highly salt-tolerant during vegetative and reproductive growth, with optimal growth occurring at 200 mM NaCl. Several S. salsa genes involved in salt tolerance during seedling growth have been cloned and functionally characterized. Some of these genes are highly expressed in flowers at the reproductive stage. This review lays the foundation for using S. salsa to design approaches to improve salt tolerance in crops and to remediate saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baby, T., Collins, C., Tyerman, S. D., & Gilliham, M. (2016). Salinity negatively affects pollen tube growth and fruit set in grapevines and is not mitigated by silicon. American Journal of Enology and Viticulture, 67, 218–228.

    Article  CAS  Google Scholar 

  • Biswas, M. S., Fukaki, H., Mori, I. C., Nakahara, K., & Mano, J. I. (2019). Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in the auxin signaling for lateral root formation. The Plant Journal, 100, 536–548.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Song, J., & Wang, B. S. (2010). NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus. Acta Physiologiae Plantarum, 32, 27–36.

    Article  CAS  Google Scholar 

  • De Storme, N., & Geelen, D. (2014). The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant, Cell & Environment, 37, 1–18.

    Article  CAS  Google Scholar 

  • Debez, A., Hamed, K. B., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil, 262, 179–189.

    Article  CAS  Google Scholar 

  • Duan, H. R., Ma, Q., Zhang, J. L., Hu, J., Bao, A. K., Wei, L., Wang, Q., Luan, S., & Wang, S. M. (2015). The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition. Plant and Soil, 395, 173–187.

    Article  CAS  Google Scholar 

  • Feng, Z. T., Deng, Y. Q., Zhang, S. C., Liang, X., Yuan, F., Hao, J. L., Zhang, J. C., Sun, S. F., & Wang, B. S. (2015). K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Science, 238, 286–296.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., Gaur, P. M., Gowda, C. L., Krishnamurthy, L., Samineni, S., Siddique, K. H., Turner, N. C., Vadez, V., Varshney, R. K., & Colmer, T. D. (2010). Salt sensitivity in chickpea. Plant, Cell & Environment, 33, 490–509.

    Article  CAS  Google Scholar 

  • Forieri, I., Hildebrandt, U., & Rostás, M. (2016). Salinity stress effects on direct and indirect defence metabolites in maize. Environmental and Experimental Botany, 122, 68–77.

    Article  CAS  Google Scholar 

  • Grigore, M. N., Boscaiu, M., Llinares, J., & Vicente, O. (2012). Mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40, 58–66.

    Article  CAS  Google Scholar 

  • Guo, J., Suo, S., & Wang, B. S. (2015). Sodium chloride improves seed vigour of the euhalophyte Suaeda salsa. Seed Science Research, 25, 335–344.

    Article  CAS  Google Scholar 

  • Guo, J., Li, Y., Han, G., Song, J., & Wang, B. (2018). NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Functional Plant Biology, 45, 350–361.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Dong, X., Han, G., & Wang, B. (2019). Salt-enhanced reproductive development of Suaeda salsa L. coincided with ion transporter gene upregulation in flowers and increased pollen K+ content. Frontiers in Plant Science, 10, 333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, N., Shao, Q., Bao, H., & Wang, B. (2011). Cloning and characterization of a Ca2+/H+ Antiporter from Halophyte Suaeda salsa L. Plant Molecular Biology Reporter, 29, 449–457.

    Article  CAS  Google Scholar 

  • Han, N., Lan, W., He, X., Shao, Q., Wang, B., & Zhao, X. (2012). Expression of a Suaeda salsa vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Molecular Biology Reporter, 30, 470–477.

    Article  CAS  Google Scholar 

  • Huchzermeyer, B., & Flowers, T. (2013). Putting halophytes to work–genetics, biochemistry and physiology. Functional Plant Biology, 40, 5–8.

    Article  CAS  Google Scholar 

  • Jiang, Z., Zhou, X., Tao, M., Yuan, F., Liu, L., Wu, F., Wu, X., Xiang, Y., Niu, Y., & Liu, F. (2019). Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 572, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • otula, L., Khan, H. A., Quealy, J., Turner, N. C., Vadez, V., Siddique, K. H., Clode, P. L., & Colmer, T. D. (2015). Salt sensitivity in chickpea (Cicer arietinum L.): Ions in reproductive tissues and yield components in contrasting genotypes. Plant, Cell & Environment, 38, 1565–1577.

    Google Scholar 

  • Li, W., An, P., & Liu, X. (2008). Effect of storage, stratification, temperature and gibberellins on germination of dimorphic seeds of Suaeda salsa under saline conditions. Seed Science and Technology, 36, 122–132.

    Article  Google Scholar 

  • Li, W., Zhang, Q., Kong, X., Wu, C., Ma, X., Zhang, H., & Zhao, Y. (2009). Salt tolerance is conferred in Arabidopsis by overexpression of the vacuolar Na+/H+ antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. Journal of Plant Biology, 52, 147.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, X., Song, J., Fan, H., Feng, G., & Wang, B. (2011). Accumulation of ions during seed development under controlled saline conditions of two Suaeda salsa populations is related to their adaptation to saline environments. Plant and Soil, 341, 99–107.

    Article  CAS  Google Scholar 

  • Li, K., Pang, C. H., Ding, F., Sui, N., Feng, Z. T., & Wang, B. S. (2012a). Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South African Journal of Botany, 78, 235–245.

    Article  CAS  Google Scholar 

  • Li, X., Liu, Y., Chen, M., Song, Y., Song, J., Wang, B., & Feng, G. (2012b). Relationships between ion and chlorophyll accumulation in seeds and adaptation to saline environments in Suaeda salsa populations. Plant Biosystem, 146, 142–149.

    Article  Google Scholar 

  • Lu, C., Qiu, N., Lu, Q., Wang, B., & Kuang, T. (2002). Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science, 163, 1063–1068.

    Article  CAS  Google Scholar 

  • Ma, X. L., Zhang, Q., Shi, H. Z., Zhu, J. K., Zhao, Y. X., Ma, C. L., & Zhang, H. (2004). Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biologia Plantarum, 48, 219–225.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Pang, C. H., Li, K., & Wang, B. (2011). Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiologia Plantarum, 143, 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Plackett, A. R., Thomas, S. G., Wilson, Z. A., & Hedden, P. (2011). Gibberellin control of stamen development: A fertile field. Trends in Plant Science, 16, 568–578.

    Article  CAS  PubMed  Google Scholar 

  • Qi, C. H., Chen, M., Song, J., & Wang, B. S. (2009). Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Science, 176, 200–205.

    Article  CAS  Google Scholar 

  • Rui, Y., & Dinneny, J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytologist, 225(4), 1428–1439.

    Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao, Q., Han, N., Ding, T., Zhou, F., & Wang, B. (2014). SsHKT1; 1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Functional Plant Biology, 41, 790–802.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. (2009). Root morphology is related to the phenotypic variation in waterlogging tolerance of two populations of Suaeda salsa under salinity. Plant and Soil, 324, 231–240.

    Article  CAS  Google Scholar 

  • Song, J., & Wang, B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 115, 541–553.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Fan, H., Zhao, Y., Jia, Y., Du, X., & Wang, B. (2008). Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany, 88, 331–337.

    Article  CAS  Google Scholar 

  • Song, J., Shi, G., Xing, S., Chen, M., & Wang, B. (2009). Effects of nitric oxide and nitrogen on seedling emergence, ion accumulation, and seedling growth under salinity in the euhalophyte Suaeda salsa. Journal of Plant Nutrition and Soil Science, 172, 544–549.

    Article  CAS  Google Scholar 

  • Song, J., Shi, G., Gao, B., Fan, H., & Wang, B. (2011). Waterlogging and salinity effects on two Suaeda salsa populations. Physiologia Plantarum, 141, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Zhou, J., Zhao, W., Xu, H., Wang, F., Xu, Y., Wang, L., & Tian, C. (2016). Effects of salinity and nitrate on production and germination of dimorphic seeds applied both through the mother plant and exogenously during germination in Suaeda salsa. Plant Species Biology, 31, 19–28.

    Article  Google Scholar 

  • Song, J., Shi, W., Liu, R., Xu, Y., Sui, N., Zhou, J., & Feng, G. (2017). The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity. Plant Species Biology, 32, 107–114.

    Article  Google Scholar 

  • Turner, N. C., Colmer, T. D., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., Siddique, K. H., & Vadez, V. (2013). Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil, 365, 347–361.

    Article  CAS  Google Scholar 

  • Wang, B., Lüttge, U., & Ratajczak, R. (2001). Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52, 2355–2365.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Lüttge, U., & Ratajczak, R. (2004). Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. Journal of Plant Physiology, 161, 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. Q., Zhao, J. Q., Chen, M., & Wang, B. S. (2006). Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa. Journal of Plant Physiology and Molecular Biology, 32, 195–201.

    CAS  PubMed  Google Scholar 

  • Wang, L., Zhao, Z. Y., Zhang, K., & Tian, C. Y. (2012). Oil content and fatty acid composition of dimorphic seeds of desert halophyte Suaeda aralocaspica. African Journal of Agricultural Research, 7, 1910–1914.

    Google Scholar 

  • Wang, F., Xu, Y. G., Wang, S., Shi, W., Liu, R., Feng, G., & Song, J. (2015). Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa. Plant Physiology and Biochemistry, 95, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Yin, C., Song, Y., Li, Q., Tian, C., & Song, J. (2018). Reproductive allocation and fruit-set pattern in the euhalophyte Suaeda salsa in controlled and field conditions. Plant Biosystem, 152, 749–758.

    Article  Google Scholar 

  • Xu, Y. G., Liu, R., Sui, N., Shi, W., Wang, L., Tian, C., & Song, J. (2016). Changes in endogenous hormones and seed-coat phenolics during seed storage of two Suaeda salsa populations. Australian Journal of Botany, 64, 325–332.

    Article  CAS  Google Scholar 

  • Xu, Y., Zhao, Y., Duan, H., Sui, N., Yuan, F., & Song, J. (2017). Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genomics, 18, 727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, F., Baskin, J. M., Baskin, C. C., Yang, X., Cao, D., & Huang, Z. (2017). Divergence in life history traits between two populations of a seed-dimorphic halophyte in response to soil salinity. Frontiers in Plant Science, 8, 1028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, K., Rashotte, A. M., & Wysocka-Diller, J. W. (2011). ABA and GA signaling pathways interact and regulate seed germination and seedling development under salt stress. Acta Physiologiae Plantarum, 33, 261–271.

    Article  CAS  Google Scholar 

  • Yuan, F., Leng, B., & Wang, B. (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science, 7, 977.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, S. Z., Sun, H. Z., Gao, Y., Sui, N., & Wang, B. S. (2011). Growth regulator-induced betacyanin accumulation and dopa-4, 5-dioxygenase (DODA) gene expression in Euhalophyte Suaeda salsa calli. In Vitro Cellular & Developmental Biology-Plant, 47, 391–398.

    Article  CAS  Google Scholar 

  • Zhao, Y., Ma, Y., Duan, H., Liu, R., & Song, J. (2019). Traits of fatty acid accumulation in dimorphic seeds of the euhalophyte Suaeda salsa in saline conditions. Plant Biosystem, 153, 514–520.

    Article  Google Scholar 

  • Zhou, J., Fu, T., Sui, N., Guo, J., Feng, G., Fan, J., & Song, J. (2016). The role of salinity in seed maturation of the euhalophyte Suaeda salsa. Plant Biosystem, 150, 83–90.

    Article  Google Scholar 

  • Zhou, X. T., Wang, F., Ma, Y. P., Jia, L. J., Liu, N., Wang, H. Y., Zhao, P., Xia, G. X., & Zhong, N. Q. (2018). Ectopic expression of SsPETE2, a plastocyanin from Suaeda salsa, improves plant tolerance to oxidative stress. Plant Science, 268, 1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31570251 and 31770288), the independent innovation and achievement transformation of special major key technical plans of Shandong Province (2015ZDJS03002 and 2017CXGC0313), the Natural Science Research Foundation of Shandong Province (ZR2017MC003), and the Higher Educational Science and Technology Program of Shandong Province (J17KA136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guo, J., Song, J., Wang, B. (2021). Adaptation of the Euhalophyte Suaeda salsa to High-Salinity Conditions. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_83

Download citation

Publish with us

Policies and ethics