Skip to main content

Landslide Susceptibility Mapping Using Bivariate Frequency Ratio Model and Geospatial Techniques: A Case from Karbi Anglong West District in Assam, India

  • Chapter
  • First Online:
Remote Sensing and GIScience

Abstract

The study attempts to prepare an inventory map of landslide susceptibility using geospatial technology and bivariate frequency ratio model for Karbi Anglong West district in Assam, India. Past landslide locations were extracted from the landslide hazard zonation map of Assam for preparing landslide susceptibility. Of the total past landslide locations, 70% locations were utilized for building the model and 30% locations for validating landslide susceptibility map. Geology, lineament, slope, aspect, drainage, land use/land cover, and soil conditioning parameters were integrated through frequency ratio model to prepare the susceptibility map. High and moderate susceptibililty areas were found in the south and south-western parts having steep slopes, while low susceptibility areas were distributed sparsely over areas having gentle slope in the district. Validation of landslide susceptibility map revealed its accordance with the past landslide locations. The accuracy of the landslide susceptibility map was assessed through receiver operating characteristics curves. Prediction rate and success rate under curves were found to be 0.884 and 0.854, respectively. The map produced through the integration of landslide causative factors and frequency ratio model helped not only in identifying landslide-prone areas but also proved to be instrumental for analyzing level of susceptibility. Thus, the methodology can be employed for monitoring and assessing landslide susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9, 93–106. https://doi.org/10.1007/s10346-011-0283-7.

    Article  Google Scholar 

  • Akgun, A., Dag, S., & Bulut, F. (2008). Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143. https://doi.org/10.1007/s00254-007-0882-8.

    Article  Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010.

    Article  Google Scholar 

  • Barredo, J., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2, 9–23.

    Article  Google Scholar 

  • Beguería, S., & Lorente, A. (2007). Landslide hazard mapping by multivariate statistics: Comparison of methods and case study in the Spanish Pyrenees (Technical report). Zaragoza: InstitutoPirenaico de Ecologia.

    Google Scholar 

  • Chalkias, C., Ferentinou, M., & Polykretis, C. (2014). GIS-based landslide susceptibility mapping on the Peloponnese Peninsula, Greece. Geosciences, 4, 176–190. https://doi.org/10.3390/geosciences4030176.

    Article  Google Scholar 

  • Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–228. https://doi.org/10.1016/S0169-555X(01)00087-3.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., Li, J. X. Z. W., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40, 381–391.

    Article  Google Scholar 

  • Demir, G., Aytekin, M., Akgün, A., Ikizler, S. B., & Tatar, O. (2013). A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards, 65, 1481–1506. https://doi.org/10.1007/s11069-012-0418-8.

    Article  Google Scholar 

  • Dhakal, A. S., Amada, T., & Aniya, M. (2000). Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. PE&RS, Photogrammetric Engineering & Remote Sensing, 66, 981–989.

    Google Scholar 

  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41, 720–730.

    Article  Google Scholar 

  • Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66, 327–343. https://doi.org/10.1016/j.geomorph.2004.09.025.

    Article  Google Scholar 

  • Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94, 268–289.

    Article  Google Scholar 

  • Geological Survey of India. (1998). Geology and mineral map of north East India. New Delhi: Ministry of Mines, Government of India.

    Google Scholar 

  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., & Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81, 65–83. https://doi.org/10.1016/j.enggeo.2005.07.011.

    Article  Google Scholar 

  • Gupta, R. P., & Joshi, B. C. (1990). Landslide hazard zoning using the GIS approach—A case study from the Ramganga catchment, Himalayas. Engineering Geology, 28, 119–131.

    Article  Google Scholar 

  • Hansen, A. (1984). Landslide hazard analysis. In D. Brunsden & E. Prior (Eds.), Slope instability (pp. 523–602). New York: Wiley.

    Google Scholar 

  • Hong, Y. A. N. G., & Adler, R. F. (2007). Towards an early-warning system for global landslides triggered by rainfall and earthquake. International Journal of Remote Sensing, 28, 3713–3719. https://doi.org/10.1080/01431160701311242.

    Article  Google Scholar 

  • Huang, J., Zhou, Q., & Wang, F. (2015). Mapping the landslide susceptibility in Lantau Island, Hong Kong, by frequency ratio and logistic regression model. Annals of GIS, 21, 191–208. https://doi.org/10.1080/19475683.2014.992373.

    Article  Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672. https://doi.org/10.1007/s12040-006-0004-0.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33–41. https://doi.org/10.1007/s10346-006-0047y.

    Article  Google Scholar 

  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the DamreiRomel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.

    Article  Google Scholar 

  • Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982–990.

    Article  Google Scholar 

  • Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71, 289–302.

    Article  Google Scholar 

  • Lin, M. L., & Tung, C. C. (2004). A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Engineering Geology, 71, 63–77.

    Article  Google Scholar 

  • Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153–1171.

    Article  Google Scholar 

  • National Bureau of Soil Survey and Land Use Planning. (1999). Soils of Assam for optimising land use. Nagpur: Ministry of Agriculture, Government of India.

    Google Scholar 

  • National Institute of Disaster Management. (2011). Assam: National disaster risk reduction portal. New Delhi: Ministry of Home Affairs.

    Google Scholar 

  • Neuhäuser, B., & Terhorst, B. (2007). Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology, 86, 12–24. https://doi.org/10.1016/j.geomorph.2006.08.002.

    Article  Google Scholar 

  • Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32, 81–100.

    Article  Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63, 965–996. https://doi.org/10.1007/s11069-012-0217-2.

    Article  Google Scholar 

  • Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122, 349–369.

    Article  Google Scholar 

  • Pradhan, B. (2011). Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63, 329–349. https://doi.org/10.1007/s12665-010-0705-1.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7, 13–30. https://doi.org/10.1007/s10346-009-0183-2.

    Article  Google Scholar 

  • Pradhan, B., & Youssef, A. M. (2010). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3, 319–326.

    Article  Google Scholar 

  • Raghuvanshi, T. K., Negassa, L., & Kala, P. M. (2015). GIS based grid overlay method versus modeling approach – A comparative study for landslide hazard zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia. The Egyptian Journal of Remote Sensing and Space Science., 18, 235–250.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw Hill.

    Google Scholar 

  • Sahana, M., & Sajjad, H. (2017). Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: A case from Rudraprayag district, India. Journal of Mountain Science. https://doi.org/10.1007/s11629-017-4404-1.

  • Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109, 108–121. https://doi.org/10.1016/j.geomorph.2009.02.026.

    Article  Google Scholar 

  • Shahabi, H., Ahmad, B. B., & Khezri, S. (2012). Landslide susceptibility mapping using image satellite and GIS technology. International Journal of Recent Technology and Engineering, 1, 1–5.

    Google Scholar 

  • Süzen, M. L., & Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environmental Geology, 45, 665–679.

    Article  Google Scholar 

  • Tangestani, M. H. (2009). A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility mapping using a GIS: An experience from Zagros Mountains, SW Iran. Journal of Asian Earth Sciences, 35, 66–73. https://doi.org/10.1016/j.jseaes.2009.01.002.

    Article  Google Scholar 

  • Torkashvand, A. M., Irani, A., & Sorur, J. (2014). The preparation of landslide map by landslide numerical risk factor (LNRF) model and geographic information system (GIS). The Egyptian Journal of Remote Sensing and Space Science, 17, 159–170.

    Article  Google Scholar 

  • Wan, S. (2009). A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Engineering Geology, 108, 237–251. https://doi.org/10.1016/j.enggeo.2009.06.014.

    Article  Google Scholar 

  • Yagi, H. (2003). Development of assessment method for landslide hazardness by AHP. In Abstract volume of the 42nd annual meeting of the Japan Landslide Society, pp. 209–212.

    Google Scholar 

  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72, 1–12. https://doi.org/10.1016/j.catena.2007.01.003.

    Article  Google Scholar 

  • Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35, 1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, R., Singh, R., Sajjad, H. (2021). Landslide Susceptibility Mapping Using Bivariate Frequency Ratio Model and Geospatial Techniques: A Case from Karbi Anglong West District in Assam, India. In: Kumar, P., Sajjad, H., Chaudhary, B.S., Rawat, J.S., Rani, M. (eds) Remote Sensing and GIScience . Springer, Cham. https://doi.org/10.1007/978-3-030-55092-9_4

Download citation

Publish with us

Policies and ethics