Skip to main content

Nephrotoxins

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

The excretion of endogenous and exogenous compounds is a fundamental aspect of renal function, which, by necessity, exposes the kidney to high concentrations of these substances and their metabolites. Some of these compounds are “toxic” to the kidney and substances capable of causing renal damage or injury are termed “nephrotoxins.” While naturally occurring nephrotoxins exist and environmental exposures can cause injury, the focus of this chapter is on the pharmaceutical agents used to treat medical disease and its sequelae. While specific, ubiquitously prescribed agents are discussed in detail, equal weight is placed on highlighting core nephrotoxin concepts, illustrating the most commonly seen nephrotoxicity phenotypes, and describing the mechanisms by which these compounds cause injury. This foundation creates the context for discussing approaches to avoid, minimize, and manage the impact of nephrotoxin exposure. Although targeted treatments for nephrotoxic acute kidney injury do not yet exist, broad multidisciplinary strategies are capable of predicting, preventing, and mitigating the impact of these medications. Furthermore, a thorough understanding of the core concepts underpinning nephrotoxicity will allow future development of disease-specific interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Goldstein SL, editors. Pediatric nephrology. Berlin/Heidelberg: Springer; 2016.

    Google Scholar 

  2. Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993;73(4):765–96.

    Article  CAS  PubMed  Google Scholar 

  3. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290(2):F251–61.

    Article  CAS  PubMed  Google Scholar 

  4. Ullrich KJ. Renal transporters for organic anions and organic cations. Structural requirements for substrates. J Membr Biol. 1997;158(2):95–107.

    Article  CAS  PubMed  Google Scholar 

  5. Schreiner GE. Toxic nephropathy: adverse renal effects caused by drugs and chemicals. JAMA. 1965;191:849–50.

    Article  CAS  PubMed  Google Scholar 

  6. Uber AM, Sutherland SM. Nephrotoxins and nephrotoxic acute kidney injury. Pediatr Nephrol (Berlin, Germany). 2020;35(10):1825–33.

    Article  Google Scholar 

  7. Kleinknecht D, Landais P, Goldfarb B. Drug-associated acute renal failure. A prospective collaborative study of 81 biopsied patients. Adv Exp Med Biol. 1987;212:125–8.

    Article  CAS  PubMed  Google Scholar 

  8. Schetz M, Dasta J, Goldstein S, Golper T. Drug-induced acute kidney injury. Curr Opin Crit Care. 2005;11(6):555–65.

    Article  PubMed  Google Scholar 

  9. Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hogan JJ, Markowitz GS, Radhakrishnan J. Drug-induced glomerular disease: immune-mediated injury. Clin J Am Soc Nephrol. 2015;10(7):1300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol (Berlin, Germany). 2017;32(11):2015–25.

    Article  Google Scholar 

  12. Blossom AP, Cleary JD, Daley WP. Acyclovir-induced crystalluria. Ann Pharmacother. 2002;36(3):526.

    Article  PubMed  Google Scholar 

  13. Roberts DM, Smith MW, McMullan BJ, Sevastos J, Day RO. Acute kidney injury due to crystalluria following acute valacyclovir overdose. Kidney Int. 2011;79(5):574.

    Article  PubMed  Google Scholar 

  14. Kashoor I, Batlle D. Proximal renal tubular acidosis with and without Fanconi syndrome. Kidney Res Clin Pract. 2019;38(3):267–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kitterer D, Schwab M, Alscher MD, Braun N, Latus J. Drug-induced acid-base disorders. Pediatr Nephrol (Berlin, Germany). 2015;30(9):1407–23.

    Article  Google Scholar 

  16. Fayolle M, Souweine JS, Mathieu O, Bargnoux AS, Cristol JP, Badiou S. Water, lithium and sodium: watch out for dangerous injuries. Ann Biol Clin. 2020;78(4):449–53.

    Google Scholar 

  17. Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11(10):576–88.

    Article  CAS  PubMed  Google Scholar 

  18. Izzedine H, Launay-Vacher V, Bourry E, Brocheriou I, Karie S, Deray G. Drug-induced glomerulopathies. Expert Opin Drug Saf. 2006;5(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  19. Pape L, Ahlenstiel T. mTOR inhibitors in pediatric kidney transplantation. Pediatr Nephrol (Berlin, Germany). 2014;29(7):1119–29.

    Article  Google Scholar 

  20. Lee Y, Lee ST, Cho H. D-penicillamine-induced ANA (+) ANCA (+) vasculitis in pediatric patients with Wilson’s disease. Clin Nephrol. 2016;85(5):296–300.

    Article  CAS  PubMed  Google Scholar 

  21. Goldman RD, Koren G. Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol. 2004;26(7):421–6.

    Article  PubMed  Google Scholar 

  22. Clavé S, Rousset-Rouvière C, Daniel L, Tsimaratos M. The invisible threat of non-steroidal anti-inflammatory drugs for kidneys. Front Pediatr. 2019;7:520.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28(2):163–70.

    Article  PubMed  Google Scholar 

  24. Lacquaniti A, Campo S, Casuscelli Di Tocco T, Rovito S, Bucca M, Ragusa A, et al. Acute and chronic kidney disease after pediatric liver transplantation: an underestimated problem. Clin Transpl. 2020;34:e14082.

    Article  Google Scholar 

  25. Downes KJ, Hayes M, Fitzgerald JC, Pais GM, Liu J, Zane NR, et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother. 2020;75(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  26. Hanna MH, Askenazi DJ, Selewski DT. Drug-induced acute kidney injury in neonates. Curr Opin Pediatr. 2016;28(2):180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ligi I, Boubred F, Grandvuillemin I, Simeoni U. The neonatal kidney: implications for drug metabolism and elimination. Curr Drug Metab. 2013;14(2):174–7.

    CAS  PubMed  Google Scholar 

  28. Girardi A, Raschi E, Galletti S, Allegaert K, Poluzzi E, De Ponti F. Drug-induced renal injury in neonates: challenges in clinical practice and perspectives in drug development. Expert Opin Drug Metab Toxicol. 2017;13(5):555–65.

    Article  CAS  PubMed  Google Scholar 

  29. Nada A, Bonachea EM, Askenazi DJ. Acute kidney injury in the fetus and neonate. Semin Fetal Neonatal Med. 2017;22(2):90–7.

    Article  PubMed  Google Scholar 

  30. Pandey R, Koshy RG, Dako J. Angiotensin converting enzyme inhibitors induced acute kidney injury in newborn. J Matern Fetal Neonatal Med. 2017;30(6):748–50.

    Article  CAS  PubMed  Google Scholar 

  31. Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077–97.

    Article  CAS  PubMed  Google Scholar 

  32. Saint-Faust M, Boubred F, Simeoni U. Renal development and neonatal adaptation. Am J Perinatol. 2014;31(9):773–80.

    Article  CAS  PubMed  Google Scholar 

  33. McMahon KR, Rassekh SR, Schultz KR, Blydt-Hansen T, Cuvelier GDE, Mammen C, et al. Epidemiologic characteristics of acute kidney injury during cisplatin infusions in children treated for cancer. JAMA Netw Open. 2020;3(5):e203639.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bhatt J, Jahnke N, Smyth AR. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2019;9(9):Cd002009.

    PubMed  Google Scholar 

  35. Thomas MC. Diuretics, ACE inhibitors and NSAIDs—the triple whammy. Med J Aust. 2000;172(4):184–5.

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020;97(3):580–8.

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.

    Article  PubMed  Google Scholar 

  38. Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 2016;90(1):212–21.

    Article  PubMed  Google Scholar 

  39. Goswami E, Ogden RK, Bennett WE, Goldstein SL, Hackbarth R, Somers MJG, et al. Evidence-based development of a nephrotoxic medication list to screen for acute kidney injury risk in hospitalized children. Am J Health Syst Pharm. 2019;76(22):1869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xu X, Nie S, Zhang A, Mao J, Liu HP, Xia H, et al. Acute kidney injury among hospitalized children in China. Clin J Am Soc Nephrol. 2018;13(12):1791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toth-Manikowski S, Grams ME. Proton pump inhibitors and kidney disease – GI upset for the nephrologist? Kidney Int Rep. 2017;2(3):297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.

    Google Scholar 

  43. Estrada CC, Maldonado A, Mallipattu SK. Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol. 2019;30(2):187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perazella MA. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018;13(12):1897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loden JK, Seger DL, Spiller HA, Wang L, Byrne DW. Cutaneous-hemolytic loxoscelism following brown recluse spider envenomation: new understandings. Clin Toxicol (Phila). 2020:58(12):1297–1305. https://doi.org/10.1080/15563650.2020.1739701. Epub 2020 Mar 18.

  46. Isbister GK, Fan HW. Spider bite. Lancet (London, England). 2011;378(9808):2039–47.

    Article  Google Scholar 

  47. Vikrant S, Jaryal A, Gupta D, Parashar A. Epidemiology and outcome of acute kidney injury due to venomous animals from a subtropical region of India. Clin Toxicol (Phila). 2019;57(4):240–5.

    Article  CAS  Google Scholar 

  48. Furtado AA, Daniele-Silva A, Silva-Júnior AAD, Fernandes-Pedrosa MF. Biology, venom composition, and scorpionism induced by brazilian scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae): a mini-review. Off J Int Soc Toxinol. 2020;185:36–45.

    Article  CAS  Google Scholar 

  49. Berger M, Santi L, Beys-da-Silva WO, Oliveira FM, Caliari MV, Yates JR 3rd, et al. Mechanisms of acute kidney injury induced by experimental lonomia obliqua envenomation. Arch Toxicol. 2015;89(3):459–83.

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt JO. Clinical consequences of toxic envenomations by Hymenoptera. Off J Int Soc Toxinol. 2018;150:96–104.

    Article  CAS  Google Scholar 

  51. Wijayaratne DR, Bavanthan V, de Silva MVC, Nazar ALM, Wijewickrama ES. Star fruit nephrotoxicity: a case series and literature review. BMC Nephrol. 2018;19(1):288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Albersmeyer M, Hilge R, Schröttle A, Weiss M, Sitter T, Vielhauer V. Acute kidney injury after ingestion of rhubarb: secondary oxalate nephropathy in a patient with type 1 diabetes. BMC Nephrol. 2012;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moyses-Neto M, Brito BRS, de Araújo Brito DJ, Barros NDC, Dantas M, Salgado-Filho N, et al. Vitamin C-induced oxalate nephropathy in a renal transplant patient related to excessive ingestion of cashew pseudofruit (Anacardium occidentale L.): a case report. BMC Nephrol. 2018;19(1):265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bunawan NC, Rastegar A, White KP, Wang NE. Djenkolism: case report and literature review. Int Med Case Rep J. 2014;7:79–84.

    PubMed  PubMed Central  Google Scholar 

  55. Yang B, Xie Y, Guo M, Rosner MH, Yang H, Ronco C. Nephrotoxicity and Chinese herbal medicine. Clin J Am Soc Nephrol. 2018;13(10):1605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anger EE, Yu F, Li J. Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches. Int J Mol Sci. 2020;21(3):1157.

    Article  CAS  PubMed Central  Google Scholar 

  57. Scarpa A, Guerci A. Various uses of the castor oil plant (Ricinus communis L.). a review. J Ethnopharmacol. 1982;5(2):117–37.

    Article  CAS  PubMed  Google Scholar 

  58. Brandenburg WE, Ward KJ. Mushroom poisoning epidemiology in the United States. Mycologia. 2018;110(4):637–41.

    Article  CAS  PubMed  Google Scholar 

  59. Audi J, Belson M, Patel M, Schier J, Osterloh J. Ricin poisoning: a comprehensive review. JAMA. 2005;294(18):2342–51.

    Article  CAS  PubMed  Google Scholar 

  60. Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, de Lourdes BM, et al. Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol. 2015;86:41–55.

    Article  CAS  PubMed  Google Scholar 

  61. Scammell MK, Sennett CM, Petropoulos ZE, Kamal J, Kaufman JS. Environmental and occupational exposures in kidney disease. Semin Nephrol. 2019;39(3):230–43.

    Article  CAS  PubMed  Google Scholar 

  62. Jacobsen D, Hewlett TP, Webb R, Brown ST, Ordinario AT, McMartin KE. Ethylene glycol intoxication: evaluation of kinetics and crystalluria. Am J Med. 1988;84(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  63. Gómez HF, Borgialli DA, Sharman M, Shah KK, Scolpino AJ, Oleske JM, et al. Blood Lead levels of children in Flint, Michigan: 2006–2016. J Pediatr. 2018;197:158–64.

    Article  PubMed  Google Scholar 

  64. Johnson RJ, Wesseling C, Newman LS. Chronic kidney disease of unknown cause in agricultural communities. N Engl J Med. 2019;380(19):1843–52.

    Article  PubMed  Google Scholar 

  65. Hassanin NM, Awad OM, El-Fiki S, Abou-Shanab RAI, Abou-Shanab ARA, Amer RA. Association between exposure to pesticides and disorder on hematological parameters and kidney function in male agricultural workers. Environ Sci Pollut Res Int. 2018;25(31):30802–7.

    Article  CAS  PubMed  Google Scholar 

  66. Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol (Phila). 2016;54(1):1–13.

    Article  CAS  Google Scholar 

  67. Nanavati A, Herlitz LC. Tubulointerstitial injury and drugs of abuse. Adv Chronic Kidney Dis. 2017;24(2):80–5.

    Article  PubMed  Google Scholar 

  68. Pendergraft WF 3rd, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL. Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol. 2014;9(11):1996–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rivosecchi RM, Kellum JA, Dasta JF, Armahizer MJ, Bolesta S, Buckley MS, et al. Drug class combination-associated acute kidney injury. Ann Pharmacother. 2016;50(11):953–72.

    Article  CAS  PubMed  Google Scholar 

  70. Jeffres MN. The whole price of vancomycin: toxicities, troughs, and time. Drugs. 2017;77(11):1143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perazella MA. Drug-induced acute kidney injury: diverse mechanisms of tubular injury. Curr Opin Crit Care. 2019;25(6):550–7.

    Article  PubMed  Google Scholar 

  72. Luque Y, Louis K, Jouanneau C, Placier S, Esteve E, Bazin D, et al. Vancomycin-associated cast nephropathy. J Am Soc Nephrol. 2017;28(6):1723–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang K, Kestenbaum B. Proximal tubular secretory clearance: a neglected partner of kidney function. Clin J Am Soc Nephrol. 2018;13(8):1291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miners JO, Yang X, Knights KM, Zhang L. The role of the kidney in drug elimination: transport, metabolism, and the impact of kidney disease on drug clearance. Clin Pharmacol Ther. 2017;102(3):436–49.

    Article  CAS  PubMed  Google Scholar 

  75. Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol (Berlin, Germany). 2008;23(12):2159–73.

    Article  Google Scholar 

  76. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  77. Patel AM, Shariff S, Bailey DG, Juurlink DN, Gandhi S, Mamdani M, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. Ann Intern Med. 2013;158(12):869–76.

    Article  PubMed  Google Scholar 

  78. Desai CS, Martin SS, Blumenthal RS. Non-cardiovascular effects associated with statins. BMJ (Clinical Research Ed). 2014;349:g3743.

    Google Scholar 

  79. O’Connor ME, Prowle JR. Fluid Overload. Crit Care Clin. 2015;31(4):803–21.

    Article  PubMed  Google Scholar 

  80. Alobaidi R, Basu RK, DeCaen A, Joffe AR, Lequier L, Pannu N, et al. Fluid accumulation in critically ill children. Crit Care Med. 2020;48(7):1034–41.

    CAS  PubMed  Google Scholar 

  81. Sutherland SM, Goldstein SL, Alexander SR. The prospective pediatric continuous renal replacement therapy (ppCRRT) registry: a critical appraisal. Pediatr Nephrol (Berlin, Germany). 2014;29(11):2069–76.

    Article  Google Scholar 

  82. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–18.

    Article  CAS  PubMed  Google Scholar 

  83. Wu Q, Kuca K. Metabolic pathway of cyclosporine a and its correlation with nephrotoxicity. Curr Drug Metab. 2019;20(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  84. Wu H, Huang J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Curr Drug Metab. 2018;19(7):559–67.

    Article  CAS  PubMed  Google Scholar 

  85. Toriu N, Sekine A, Mizuno H, Hasegawa E, Yamanouchi M, Hiramatsu R, et al. Renal-limited thrombotic microangiopathy due to bevacizumab therapy for metastatic colorectal cancer: a case report. Case Rep Oncol. 2019;12(2):391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Daviet F, Rouby F, Poullin P, Moussi-Francès J, Sallée M, Burtey S, et al. Thrombotic microangiopathy associated with gemcitabine use: presentation and outcome in a national French retrospective cohort. Br J Clin Pharmacol. 2019;85(2):403–12.

    Article  CAS  PubMed  Google Scholar 

  87. Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125(4):616–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kundra A, Wang JC. Interferon induced thrombotic microangiopathy (TMA): analysis and concise review. Crit Rev Oncol Hematol. 2017;112:103–12.

    Article  PubMed  Google Scholar 

  89. Tada K, Ito K, Hamauchi A, Takahashi K, Watanabe R, Uchida A, et al. Clopidogrel-induced thrombotic microangiopathy in a patient with hypocomplementemia. Int Med (Tokyo, Japan). 2016;55(8):969–73.

    Article  CAS  Google Scholar 

  90. Paueksakon P, Fogo AB. Drug-induced nephropathies. Histopathology. 2017;70(1):94–108.

    Article  PubMed  Google Scholar 

  91. Markowitz GS, Bomback AS, Perazella MA. Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol. 2015;10(7):1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matthai SM, Basu G, Varughese S, Pulimood AB, Veerasamy T, Korula A. Collapsing glomerulopathy following anabolic steroid use in a 16-year-old boy with IgA nephropathy. Indian J Nephrol. 2015;25(2):99–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.

    Article  CAS  PubMed  Google Scholar 

  94. Perazella MA, Markowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010;6(8):461–70.

    Article  CAS  PubMed  Google Scholar 

  95. Barreto EF, Rule AD. Management of Drug-Associated Acute Interstitial Nephritis. Kidney360. 2020;1(1):62–4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rossert J. Drug-induced acute interstitial nephritis. Kidney Int. 2001;60(2):804–17.

    Article  CAS  PubMed  Google Scholar 

  97. Shimada M, Johnson RJ, May WS Jr, Lingegowda V, Sood P, Nakagawa T, et al. A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant. 2009;24(10):2960–4.

    Article  CAS  PubMed  Google Scholar 

  98. Shepshelovich D, Schechter A, Calvarysky B, Diker-Cohen T, Rozen-Zvi B, Gafter-Gvili A. Medication-induced SIADH: distribution and characterization according to medication class. Br J Clin Pharmacol. 2017;83(8):1801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kovnat P, Labovitz E, Levison SP. Antibiotics and the kidney. Med Clin North Am. 1973;57(4):1045–63.

    Article  CAS  PubMed  Google Scholar 

  100. Filippone EJ, Kraft WK, Farber JL. The nephrotoxicity of vancomycin. Clin Pharmacol Ther. 2017;102(3):459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cook FV, Farrar WE Jr. Vancomycin revisited. Ann Intern Med. 1978;88(6):813–8.

    Article  CAS  PubMed  Google Scholar 

  102. Hashisaki PA, Jacobson JA. Characteristics, control, and treatment of methicillin-resistant Staphylococcus aureus infections. Clin Pharm. 1982;1(4):343–8.

    CAS  PubMed  Google Scholar 

  103. Sharma R, Hammerschlag MR. Treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in children: a reappraisal of vancomycin. Curr Infect Dis Rep. 2019;21(10):37.

    Article  PubMed  Google Scholar 

  104. Pais GM, Liu J, Zepcan S, Avedissian SN, Rhodes NJ, Downes KJ, et al. Vancomycin-induced kidney injury: animal models of toxicodynamics, mechanisms of injury, human translation, and potential strategies for prevention. Pharmacotherapy. 2020;40(5):438–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sinha Ray A, Haikal A, Hammoud KA, Yu AS. Vancomycin and the risk of AKI: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11(12):2132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–44.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rutter WC, Hall RG, Burgess DS. Impact of total body weight on rate of acute kidney injury in patients treated with piperacillin-tazobactam and vancomycin. Am J Health Syst pharm. 2019;76(16):1211–7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Covvey JR, Erickson O, Fiumara D, Mazzei K, Moszczenski Z, Slipak K, et al. Comparison of vancomycin area-under-the-curve dosing versus trough target-based dosing in obese and nonobese patients with methicillin-resistant Staphylococcus aureus bacteremia. Ann Pharmacother. 2020;54(7):644–51.

    Article  CAS  PubMed  Google Scholar 

  109. Panwar B, Johnson VA, Patel M, Balkovetz DF. Risk of vancomycin-induced nephrotoxicity in the population with chronic kidney disease. Am J Med Sci. 2013;345(5):396–9.

    Article  PubMed  Google Scholar 

  110. Sridharan K, Al Daylami A, Ajjawi R, Al-Ajooz H, Veeramuthu S. Clinical pharmacokinetics of vancomycin in critically ill children. Eur J Drug Metab Pharmacokinet. 2019;44(6):807–16.

    Article  CAS  PubMed  Google Scholar 

  111. Robertson AD, Li C, Hammond DA, Dickey TA. Incidence of acute kidney injury among patients receiving the combination of vancomycin with piperacillin-tazobactam or meropenem. Pharmacotherapy. 2018;38(12):1184–93.

    Article  CAS  PubMed  Google Scholar 

  112. Ciarambino T, Giannico OV, Campanile A, Tirelli P, Para O, Signoriello G, et al. Acute kidney injury and vancomycin/piperacillin/tazobactam in adult patients: a systematic review. Intern Emerg Med. 2020;15(2):327–31.

    Article  PubMed  Google Scholar 

  113. Covert KL, Knoetze D, Cole M, Lewis P. Vancomycin plus piperacillin/tazobactam and acute kidney injury risk: a review of the literature. J Clin Pharm Ther. 2020;45:1253–63.

    Article  CAS  PubMed  Google Scholar 

  114. Kalligeros M, Karageorgos SA, Shehadeh F, Zacharioudakis IM, Mylonakis E. The association of acute kidney injury with the concomitant use of vancomycin and piperacillin/tazobactam in children: A systematic review and meta-analysis. Antimicrob Agents Chemother. 2019;63(12):e01572.

    Article  CAS  PubMed Central  Google Scholar 

  115. Girand HL. Continuous infusion vancomycin in pediatric patients: a critical review of the evidence. J Pediatr Pharmacol Ther. 2020;25(3):198–214.

    PubMed  PubMed Central  Google Scholar 

  116. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–64.

    Article  PubMed  Google Scholar 

  117. Zappitelli M, Moffett BS, Hyder A, Goldstein SL. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transplant. 2011;26(1):144–50.

    Article  PubMed  Google Scholar 

  118. Saad A, Young MR, Studtmann AE, Autry EB, Schadler A, Beckman EJ, et al. Incidence of nephrotoxicity with prolonged aminoglycoside exposure in patients with cystic fibrosis. Pediatr Pulmonol. 2020;55(12):3384–90.

    Article  PubMed  Google Scholar 

  119. Huang H, Jin WW, Huang M, Ji H, Capen DE, Xia Y, et al. Gentamicin-induced acute kidney injury in an animal model involves programmed necrosis of the collecting duct. J Am Soc Nephrol. 2020;31(9):2097–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Le Moyec L, Racine S, Le Toumelin P, Adnet F, Larue V, Cohen Y, et al. Aminoglycoside and glycopeptide renal toxicity in intensive care patients studied by proton magnetic resonance spectroscopy of urine. Crit Care Med. 2002;30(6):1242–5.

    Article  PubMed  Google Scholar 

  121. Humes HD. Aminoglycoside nephrotoxicity. Kidney Int. 1988;33(4):900–11.

    Article  CAS  PubMed  Google Scholar 

  122. Smith CR, Moore RD, Lietman PS. Studies of risk factors for aminoglycoside nephrotoxicity. Am J Kidney Dis. 1986;8(5):308–13.

    Article  CAS  PubMed  Google Scholar 

  123. Zager RA. Endotoxemia, renal hypoperfusion, and fever: interactive risk factors for aminoglycoside and sepsis-associated acute renal failure. Am J Kidney Dis. 1992;20(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  124. Bertino JS Jr, Booker LA, Franck PA, Jenkins PL, Franck KR, Nafziger AN. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis. 1993;167(1):173–9.

    Article  PubMed  Google Scholar 

  125. Gonzalez LS 3rd, Spencer JP. Aminoglycosides: a practical review. Am Fam Physician. 1998;58(8):1811–20.

    PubMed  Google Scholar 

  126. Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014;27(6):573–7.

    Article  PubMed  Google Scholar 

  127. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25(4):679–87.

    Article  CAS  PubMed  Google Scholar 

  128. Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med. 1984;100(3):352–7.

    Article  CAS  PubMed  Google Scholar 

  129. Miron D. Once daily dosing of gentamicin in infants and children. Pediatr Infect Dis J. 2001;20(12):1169–73.

    Article  CAS  PubMed  Google Scholar 

  130. Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, Ioannidis JP. Extended-interval aminoglycoside administration for children: a meta-analysis. Pediatrics. 2004;114(1):e111–8.

    Article  PubMed  Google Scholar 

  131. Cannella CA, Wilkinson ST. Acute renal failure associated with inhaled tobramycin. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2006;63(19):1858–61.

    Article  Google Scholar 

  132. Pai VB, Nahata MC. Efficacy and safety of aerosolized tobramycin in cystic fibrosis. Pediatr Pulmonol. 2001;32(4):314–27.

    Article  CAS  PubMed  Google Scholar 

  133. Chandiramani R, Cao D, Nicolas J, Mehran R. Contrast-induced acute kidney injury. Cardiovasc Interv Ther. 2020;35(3):209–17.

    Article  PubMed  Google Scholar 

  134. Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol. 2016;32(2):247–55.

    Article  PubMed  Google Scholar 

  135. Murphy SW, Barrett BJ, Parfrey PS. Contrast nephropathy. J Am Soc Nephrol. 2000;11(1):177–82.

    Article  PubMed  Google Scholar 

  136. Fang LS, Sirota RA, Ebert TH, Lichtenstein NS. Low fractional excretion of sodium with contrast media-induced acute renal failure. Arch Intern Med. 1980;140(4):531–3.

    Article  CAS  PubMed  Google Scholar 

  137. Wang Y, Liu K, Xie X, Song B. Contrast-associated acute kidney injury: an update of risk factors, risk factor scores, and preventive measures. Clin Imaging. 2020;69:354–62.

    Article  PubMed  Google Scholar 

  138. Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;2(1):85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lautin EM, Freeman NJ, Schoenfeld AH, Bakal CW, Haramati N, Friedman AC, et al. Radiocontrast-associated renal dysfunction: a comparison of lower-osmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  140. Tumlin J, Stacul F, Adam A, Becker CR, Davidson C, Lameire N, et al. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006;98(6a):14k–20k.

    Article  CAS  PubMed  Google Scholar 

  141. Aoun J, Nicolas D, Brown JR, Jaber BL. Maximum allowable contrast dose and prevention of acute kidney injury following cardiovascular procedures. Curr Opin Nephrol Hypertens. 2018;27(2):121–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268(3):719–28.

    Article  PubMed  Google Scholar 

  143. McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271(1):65–73.

    Article  PubMed  Google Scholar 

  144. Gilligan LA, Davenport MS, Trout AT, Su W, Zhang B, Goldstein SL, et al. Risk of acute kidney injury following contrast-enhanced CT in hospitalized pediatric patients: a propensity score analysis. Radiology. 2020;294(3):548–56.

    Article  PubMed  Google Scholar 

  145. McDonald JS, McDonald RJ, Tran CL, Kolbe AB, Williamson EE, Kallmes DF. Postcontrast acute kidney injury in pediatric patients: a cohort study. Am J Kidney Dis. 2018;72(6):811–8.

    Article  PubMed  Google Scholar 

  146. Jack DB. One hundred years of aspirin. Lancet (London, England). 1997;350(9075):437–9.

    Article  CAS  Google Scholar 

  147. Montinari MR, Minelli S, De Caterina R. The first 3500 years of aspirin history from its roots - a concise summary. Vasc Pharmacol. 2019;113:1–8.

    Article  CAS  Google Scholar 

  148. Paulose-Ram R, Hirsch R, Dillon C, Losonczy K, Cooper M, Ostchega Y. Prescription and non-prescription analgesic use among the US adult population: results from the third national health and nutrition examination survey (NHANES III). Pharmacoepidemiol Drug Saf. 2003;12(4):315–26.

    Article  PubMed  Google Scholar 

  149. Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med. 2009;13(9b):3753–63.

    Article  PubMed  Google Scholar 

  150. Bakhriansyah M, Souverein PC, van den Hoogen MWF, de Boer A, Klungel OH. Risk of nephrotic syndrome for non-steroidal anti-inflammatory drug users. Clin J Am Soc Nephrol. 2019;14(9):1355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med. 1999;106(5b):13s–24s.

    Article  CAS  PubMed  Google Scholar 

  152. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002;53:35–57.

    Article  CAS  PubMed  Google Scholar 

  153. Schlondorff D. Renal prostaglandin synthesis. Sites of production and specific actions of prostaglandins. Am J Med. 1986;81(2b):1–11.

    Article  CAS  PubMed  Google Scholar 

  154. Gambaro G, Perazella MA. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J Intern Med. 2003;253(6):643–52.

    Article  CAS  PubMed  Google Scholar 

  155. Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int. 1993;44(3):643–53.

    Article  CAS  PubMed  Google Scholar 

  156. Wharam PC, Speedy DB, Noakes TD, Thompson JM, Reid SA, Holtzhausen LM. NSAID use increases the risk of developing hyponatremia during an ironman triathlon. Med Sci Sports Exerc. 2006;38(4):618–22.

    Article  CAS  PubMed  Google Scholar 

  157. González E, Gutiérrez E, Galeano C, Chevia C, de Sequera P, Bernis C, et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73(8):940–6.

    Article  PubMed  Google Scholar 

  158. Jones M, Tomson C. Acute kidney injury and ‘nephrotoxins’: mind your language. Clin Med (Lond). 2018;18(5):384–6.

    Article  Google Scholar 

  159. Perazella MA, Coca SG. Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nat Rev Nephrol. 2013;9(8):484–90.

    Article  CAS  PubMed  Google Scholar 

  160. Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357(8):797–805.

    Article  CAS  PubMed  Google Scholar 

  161. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  CAS  PubMed  Google Scholar 

  162. Yacoub R, Patel N, Lohr JW, Rajagopalan S, Nader N, Arora P. Acute kidney injury and death associated with renin angiotensin system blockade in cardiothoracic surgery: a meta-analysis of observational studies. Am J Kidney Dis. 2013;62(6):1077–86.

    Article  PubMed  Google Scholar 

  163. Ghazi P, Moffett BS, Cabrera AG. Hypotension as the etiology for angiotensin-converting enzyme (ACE) inhibitor-associated acute kidney injury in pediatric patients. Pediatr Cardiol. 2014;35(5):767–70.

    Article  PubMed  Google Scholar 

  164. Moffett BS, Goldstein SL, Adusei M, Kuzin J, Mohan P, Mott AR. Risk factors for postoperative acute kidney injury in pediatric cardiac surgery patients receiving angiotensin-converting enzyme inhibitors. Pediatr Crit Care Med. 2011;12(5):555–9.

    Article  PubMed  Google Scholar 

  165. Holtkamp FA, de Zeeuw D, Thomas MC, Cooper ME, de Graeff PA, Hillege HJ, et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 2011;80(3):282–7.

    Article  CAS  PubMed  Google Scholar 

  166. Raza MN, Hadid M, Keen CE, Bingham C, Salmon AH. Acute tubulointerstitial nephritis, treatment with steroid and impact on renal outcomes. Nephrology (Carlton). 2012;17(8):748–53.

    Article  Google Scholar 

  167. Valluri A, Hetherington L, McQuarrie E, Fleming S, Kipgen D, Geddes CC, et al. Acute tubulointerstitial nephritis in Scotland. QJM. 2015;108(7):527–32.

    Article  CAS  PubMed  Google Scholar 

  168. Moledina DG, Perazella MA. Drug-induced acute interstitial nephritis. Clin J Am Soc Nephrol. 2017;12(12):2046–9.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005;45(5):804–17.

    Article  CAS  PubMed  Google Scholar 

  170. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Arbel Y, Ben-Assa E, Puzhevsky D, Litmanowicz B, Galli N, Chorin E, et al. Forced diuresis with matched hydration during transcatheter aortic valve implantation for reducing acute kidney injury: a randomized, sham-controlled study (REDUCE-AKI). Eur Heart J. 2019;40(38):3169–78.

    Article  PubMed  Google Scholar 

  172. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–14.

    Article  CAS  PubMed  Google Scholar 

  173. McLaughlin GE, Abitbol CL. Reversal of oliguric tacrolimus nephrotoxicity in children. Nephrol Dial Transplant. 2005;20(7):1471–5.

    Article  CAS  PubMed  Google Scholar 

  174. Axelrod DM, Sutherland SM, Anglemyer A, Grimm PC, Roth SJ. A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17(2):135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bhatt GC, Gogia P, Bitzan M, Das RR. Theophylline and aminophylline for prevention of acute kidney injury in neonates and children: a systematic review. Arch Dis Child. 2019;104(7):670–9.

    Article  PubMed  Google Scholar 

  176. Sutherland SM. Big data and pediatric acute kidney injury: the promise of electronic health record systems. Front Pediatr. 2019;7:536.

    Article  PubMed  Google Scholar 

  177. Menon S, Tarrago R, Carlin K, Wu H, Yonekawa K. Impact of integrated clinical decision support systems in the management of pediatric acute kidney injury: a pilot study. Pediatr Res. 2020; https://doi.org/10.1038/s41390-020-1046-8. Online ahead of print.

  178. McCoy AB, Waitman LR, Gadd CS, Danciu I, Smith JP, Lewis JB, et al. A computerized provider order entry intervention for medication safety during acute kidney injury: a quality improvement report. Am J Kidney Dis. 2010;56(5):832–41.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lachance P, Villeneuve PM, Rewa OG, Wilson FP, Selby NM, Featherstone RM, et al. Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review. Nephrol Dial Transplant. 2017;32(2):265–72.

    PubMed  PubMed Central  Google Scholar 

  180. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical decision support for in-hospital AKI. J Am Soc Nephrol. 2018;29(2):654–60.

    Article  PubMed  Google Scholar 

  181. Park S, Baek SH, Ahn S, Lee KH, Hwang H, Ryu J, et al. Impact of electronic acute kidney injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: a quality improvement study. Am J Kidney Dis. 2018;71(1):9–19.

    Article  PubMed  Google Scholar 

  182. Roshanov PS, Fernandes N, Wilczynski JM, Hemens BJ, You JJ, Handler SM, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ (Clinical Research Ed). 2013;346:f657.

    Google Scholar 

  183. Allen DW, Ma B, Leung KC, Graham MM, Pannu N, Traboulsi M, et al. Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: systematic review and meta-analysis. Can J Cardiol. 2017;33(6):724–36.

    Article  PubMed  Google Scholar 

  184. Hodgson LE, Sarnowski A, Roderick PJ, Dimitrov BD, Venn RM, Forni LG. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. BMJ Open. 2017;7(9):e016591.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Park S, Cho H, Park S, Lee S, Kim K, Yoon HJ, et al. Simple postoperative AKI risk (SPARK) classification before noncardiac surgery: a prediction index development study with external validation. J Am Soc Nephrol. 2019;30(1):170–81.

    Article  PubMed  Google Scholar 

  186. Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol. 2011;6(4):856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, et al. Baby NINJA (Nephrotoxic injury negated by just-in-time action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr. 2019;215:223–8.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kane-Gill SL, Smithburger PL, Kashani K, Kellum JA, Frazee E. Clinical relevance and predictive value of damage biomarkers of drug-induced kidney injury. Drug Saf. 2017;40(11):1049–74.

    Article  CAS  PubMed  Google Scholar 

  189. Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol. 2019;170:113664.

    Article  CAS  PubMed  Google Scholar 

  190. Menon S, Goldstein SL, Mottes T, Fei L, Kaddourah A, Terrell T, et al. Urinary biomarker incorporation into the renal angina index early in intensive care unit admission optimizes acute kidney injury prediction in critically ill children: a prospective cohort study. Nephrol Dial Transplant. 2016;31(4):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Barreto EF, Rule AD, Voils SA, Kane-Gill SL. Innovative use of novel biomarkers to improve the safety of renally eliminated and nephrotoxic medications. Pharmacotherapy. 2018;38(8):794–803.

    Article  CAS  PubMed  Google Scholar 

  192. Srisawat N, Kellum JA. The role of biomarkers in acute kidney injury. Crit Care Clin. 2020;36(1):125–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yonekawa, K.E., Barreto, E.F., Sutherland, S.M. (2022). Nephrotoxins. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_126

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_126

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics