Skip to main content

Advertisement

Log in

Medication-Induced Nephrotoxicity in Children

  • Renal (D Noone, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this article is to review common mechanisms of drug-induced nephrotoxicity (DIN) while highlighting some of the common medications in each category, as well as risk factors and preventative strategies with a focus on mitigating the risks of kidney injury with the use of potentially nephrotoxic medications in children.

Recent Findings

There have been recent reports about DIN associated with well-established and newer medications based on pathogenic mechanisms, new biomarkers being researched to identify DIN, and the recent development of standardized phenotypes to characterize DIN.

Summary

The kidney is a common site of drug toxicity and can occur in all age groups, including children, although the body of evidence characterizing DIN is limited compared with adults. Several drugs and drug classes can cause nephrotoxicity by one or more mechanisms. It is important for clinicians to recognize the risks for development of DIN so that appropriate monitoring and preventative measures can be implemented when the use of potentially nephrotoxic medications is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sekine T: Nephrotoxins and pediatric kidney injury. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL, editors. Pediatric nephrology, 7th edition. Springer Reference; 2016.

  2. Perazella M. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2005;4(4):689–706.

    CAS  PubMed  Google Scholar 

  3. Fanos V, Cuzzolin L. Causes and manifestation of nephrotoxicity. In: Geary DF, Schaefer F, editors. Comprehensive pediatric nephrology, 1st edition. Mosby Elsevier; 2008.

  4. • Perazella M. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018;13:1897–908. https://doi.org/10.2215/CJN.00150118A thorough review of pharmacological and clinical aspects of DIN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephol Renovasc Dis. 2014;7:457–68. https://doi.org/10.2147/IJNRD.S39747.

    Article  Google Scholar 

  6. Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol. 2011;6:856–63. https://doi.org/10.2215/CJN.08110910.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol. 2008;23:2159–73. https://doi.org/10.1007/s00467-007-0721-x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Hanna MH, Askenazi DJ, Selewski DT. Drug-induced acute kidney injury in neonates. Curr Opin Pediatr. 2016;28(2):180–7. https://doi.org/10.1097/MOP.0000000000000311A solid review of drug-induced AKI in neonates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34. https://doi.org/10.1038/ki.2015.115A consensus-based approach to developing standardized phenotypes to characterize drug-induced kidney disease.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Faria J, Ahmed S, Gerritsen KGF, Mihaila SM, Masereeuw R. Kidney-based in vitro models for drug- induced toxicity testing. Arch Toxicol. 2019;93:3397–418. https://doi.org/10.1007/s00204-019-02598-0An article describing in vitro models for drug-induced nephrotoxicity.

    Article  CAS  PubMed  Google Scholar 

  11. Nolin TD, Himmelfarb J. Drug-induced kidney disease. In: DiPiro J, Talbert RL, Yee G, Matzke G, Wells B, Posey LM, editors. Pharmacotherapy: a pathophysiologic approach, 8th edition. McGraw-Hill Medical 2011.

  12. Hilgers KF, Dotsch J, Rascher W, Mann JF. Treatment strategies in patients with chronic renal disease: ACE inhibitors, angiotensin receptor antagonists, or both? Pediatr Nephrol. 2004;19:956–61.

    PubMed  Google Scholar 

  13. Hsu CY, Liu KD, Yang J, Glidden DV, Tan TC, Pravoverov L, et al. Renin-angiotensin system blockade after acute kidney injury (AKI) and risk of recurrent AKI. CJASN. 2020;15(1):26–34. https://doi.org/10.2215/CJN.05800519.

    Article  PubMed  Google Scholar 

  14. Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med. 1999;106:13S–24S.

    CAS  PubMed  Google Scholar 

  15. John CM, Shukla R, Jones CA. Using NSAID in volume depleted children can precipitate acute renal failure. Arch Dis Child. 2007;92:524–6.

    PubMed  PubMed Central  Google Scholar 

  16. Moghal NE, Hegde S, Eastham KM. Ibuprofen and acute renal failure in a toddler. Arch Dis Child. 2004;89:276–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulinski T, Guigonis V, Dunan O, Bensman A. Acute renal failure after treatment with non-steroidal inflammatory drugs. Eur J Pediatr. 2004;163:148–50.

    CAS  PubMed  Google Scholar 

  18. Krause I, Cleper R, Eisenstein B, Davidovits M. Acute renal failure, associated with non-steroidal anti- inflammatory drugs in healthy children. Pediatr Nephrol. 2005;20:1295–8.

    PubMed  Google Scholar 

  19. Balestracci A, Ezquer M, Elmo ME, Molini A, Thorel C, Torrents M, et al. Ibuprofen-associated acute kidney injury in dehydrated children with acute gastroenteritis. Pediatr Nephrol. 2015;30(10):1873–8. https://doi.org/10.1007/s00467-015-3105-7.

    Article  PubMed  Google Scholar 

  20. Fletcher JT, Graf N, Searman A, Saleh H, Alexander SI. Nephrotoxicity with cyclooxygenase 2 inhibitor use in children. Pediatr Nephrol. 2006;21:1893–7. https://doi.org/10.1007/s00467-006-0252-x.

    Article  PubMed  Google Scholar 

  21. Fellstrom B. Cyclosporine nephrotoxicity. Transplant Proc. 2004;36:220S–3S.

    CAS  PubMed  Google Scholar 

  22. Busauschina A, Schnuelle P, Van der Woude FJ. Cyclosporine nephrotoxicity. Transplant Proc. 2004;36:229S–33S.

    CAS  PubMed  Google Scholar 

  23. Burdmann EA, Andoh TF, Yu L, Bennett WM. Cyclosporine nephrotoxicity. Semin Nephrol. 2003;23(5):465–76.

    CAS  PubMed  Google Scholar 

  24. de Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am J Kidney Dis. 2000;35(2):333–46.

    PubMed  Google Scholar 

  25. Medeiros M, Castañeda-Hernández G, Ross CJD, Carleton BC. Use of pharmacogenomics in pediatric renal transplant recipients. Front Genet. 2015;6(41):1–9.

    CAS  Google Scholar 

  26. • McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32:2015–25. https://doi.org/10.1007/s00467-016-3533-zAn updated review of aminoglycoside-induced nephrotoxicity in children.

    Article  PubMed  Google Scholar 

  27. •• Downes KJ, Hayes M, Fitzgerald JC, Pais GM, Liu J, Zane NR et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother 2019. pii: dkz325. doi:https://doi.org/10.1093/jac/dkz325. An extensive and updated review of mechanisms of antimicrobial induced nephrotoxicity with focus on pediatrics.

  28. Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, Ioannidis JP. Extended-interval aminoglycoside adminishtration for cildren: a meta-analysis. Pediatrics. 2004;114:e111–8.

    PubMed  Google Scholar 

  29. Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39:650–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prins JM, Buller HR, Kuijper EJ, Tange RA, Speelman P. Once versus thrice daily gentamicin in patients with serious infections. Lancet. 1991;341:335–9.

    Google Scholar 

  31. Bhatt J, Jahnke N, Smyth AR. Once-daily dosing versus multiple-daily dosing of intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2019;9:CD002009. https://doi.org/10.1002/14651858.CD002009.pub7.

    Article  PubMed  Google Scholar 

  32. McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. 66 Association of urinary kidney injury molecule-1 with aminoglycoside exposure in children with cystic fibrosis. J Cyst Fibros. 2014;13:S63.

    Google Scholar 

  33. Goldman RD, Koren G. Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol. 2004;26(7):421–6.

    PubMed  Google Scholar 

  34. Koren G, Lau A, Klein J, Golas C, Bologa-Campeanu M, Soldin S, et al. Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr. 1988;113:559–63.

    CAS  PubMed  Google Scholar 

  35. Bes DF, Rosanova MT, Sherna N, Arrizurieta E. Deoxycholate amphotericin B and nephrotoxicity in the pediatric setting. Pediatr Infect Dis. 2014;33:e198–206.

    Google Scholar 

  36. Goldman RD, Ong M, Wolpin J, Doyle J, Parshuram C, Koren G. Pharmacological risk factors for amphotericin B nephrotoxicity in children. J Clin Pharmacol. 2007;47:1049–54.

    CAS  PubMed  Google Scholar 

  37. Blyth C, Hale K, Palasanthiran P, O’Brien T, Bennett MH. Antifungal therapy in infants and children with proven, probable or suspected invasive fungal infections. Cochrane Database Syst Rev 2010:CD006343. doi: https://doi.org/10.1002/14651858.CD006343.pub2.

  38. Murphy SW, Barrett BJ, Parfrey PS. Contrast nephropathy. J Am Soc Nephrol. 2000;11(1):177–82.

    CAS  PubMed  Google Scholar 

  39. Bianchetti MG, Roduitt C, Oetliker OH. Acyclovir-induced renal failure: course and risk factors. Pediatr Nephrol. 1991;5(2):238–9.

    CAS  PubMed  Google Scholar 

  40. Schreiber R, Wolpin J, Koren G. Determinants of acyclovir-induced nephrotoxicity in children. Pediatr Drugs. 2008;10(2):135–9.

    Google Scholar 

  41. Rao S, Abzug MJ, Carosone-Link P, Peterson T, Child J, Siparksy G, et al. Intravenous acyclovir and renal dysfunction in children: a matched case control study. J Pediatr. 2015;166:1462–8.e1–4. https://doi.org/10.1016/j.jpeds.2015.01.023.

    Article  CAS  PubMed  Google Scholar 

  42. Xing W, Gu L, Zhang X, Xu J, Lu H. A metabolic profiling analysis of the nephrotoxicity of acyclovir rats using ultra performance liquid chromatography/mass spectrometry. Environ Toxicol Pharmacol. 2016;46:234–40.

    CAS  PubMed  Google Scholar 

  43. Ahmad T, Simmonds M, McIver AG, McGraw ME. Reversible renal failure in transplant patients receiving oral acyclovir prophylaxis. Pediatr Nephrol. 1994;8:489–91.

    CAS  PubMed  Google Scholar 

  44. Vomeiro G, Carpenter B, Robb I, Filler G. Combination of ceftriaxone and acyclovir – an underestimated nephrotoxic potential? Pediatr Nephrol. 2002;17:633–7.

    Google Scholar 

  45. Chrisp P, Clissold SP. Foscarnet. A review of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with cytomegalovirus retinitis. Drugs. 1991;41(1):104–29.

    CAS  PubMed  Google Scholar 

  46. Deray G, Katlama C, Dohin E. Prevention of foscarnet nephrotoxicity. Ann Intern Med. 1990 Aug 15;113(4):332.

    CAS  PubMed  Google Scholar 

  47. Vora SB, Brothers AW, Englund JA. Renal toxicity in pediatric patients receiving cidofovir for the treatment of adenovirus infection. J Pediatric Infect Dis Soc. 2017;6(4):399–402. https://doi.org/10.1093/jpids/pix011.

    Article  PubMed  Google Scholar 

  48. Anderson EJ, Guzman-Cottrill JA, Kletzel M, Thormann K, Sullivan C, Zheng X, et al. High-risk adenovirus-infected pediatric allogeneic hematopoietic progenitor cell transplant recipients and preemptive cidofovir therapy. Pediatr Transplant. 2008;12(2):219–27. https://doi.org/10.1111/j.1399-3046.2007.00851.x.

    Article  CAS  PubMed  Google Scholar 

  49. • Ruggiero A, Ferrara P, Attinà G, Rizzo D, Riccardi R. Renal toxicity and chemotherapy in children with cancer. Br J Clin Pharmacol. 2017;83(12):2605–14. https://doi.org/10.1111/bcp.13388A current and solid overview of chemotherapy-induced renal disease in children.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J. Cisplatin nephrotoxicity: insights into mechanism. Int J Androl. 1987 Feb;10(1):325–46.

    CAS  PubMed  Google Scholar 

  51. Knijnenburg SL, Mulder RL, Schouten-Van Meeteren AY, Bökenkamp A, Blufpand H, van Dulmen-den Broeder E, et al. Early and late renal adverse effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst Rev. 2013;10:CD008944. https://doi.org/10.1002/14651858.CD008944.pub2.

    Article  Google Scholar 

  52. Ruggiero A, Trombatore G, Triarico S, Arena R, Ferrara P, Scalzone M, et al. Platinum compounds in children with cancer: toxicity and clinical management. Anti-Cancer Drugs. 2013;24(10):1007–19. https://doi.org/10.1097/CAD.0b013e3283650bda.

    Article  CAS  PubMed  Google Scholar 

  53. Ariceta G, Rodriguez-Soriano J, Vallo A, Navajas A. Acute and chronic effects of cisplatin therapy on renal magnesium homeostasis. Med Pediatr Oncol. 1997;28(1):35–40.

    CAS  PubMed  Google Scholar 

  54. Veal GJ, Griffin MJ, Price E, Parry A, Dick GS, Little MA, et al. A phase I study in paediatric patients to evaluate the safety and pharmacokinetics of SPI-77, a liposome encapsulated formulation of cisplatin. Br J Cancer. 2001;84(8):1029–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. • Markowitz GS, Bomback AS, Perazella MA. Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol. 2015;10(7):1291–9. https://doi.org/10.2215/CJN.00860115A current and interesting review of drug-induced glomerular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kala GK, Mogri M, Weber-Shrikant E, Springate JE. Lithium-induced membranous glomerulonephropathy in a pediatric patient. Pediatr Nephrol. 2009;24(11):2267–9. https://doi.org/10.1007/s00467-009-1245-3.

    Article  PubMed  Google Scholar 

  57. Sakarcan A, Thomas DB, O’Reilly KP, Richards RW. Lithium-induced nephrotic syndrome in a young pediatric patient. Pediatr Nephrol. 2002;17(4):290–2.

    PubMed  Google Scholar 

  58. Izzedine H, Launay-Vacher V, Bourry E, Brocheriou I, Karie S, Deray G. Drug-induced glomerulopathies. Expert Opin Drug Saf. 2006;5(1):95–106.

    CAS  PubMed  Google Scholar 

  59. Jaffe JA, Kimmel PL. Chronic nephropathies of cocaine and heroin abuse: a critical review. Clin J Am Soc Nephrol. 2006;1(4):655–67.

    CAS  PubMed  Google Scholar 

  60. • Joyce E, Glasner P, Ranganathan S, Swiatecka-Urban A. Tubulointerstitial nephritis: diagnosis, treatment, and monitoring. Pediatr Nephrol. 2017;32(4):577–87. https://doi.org/10.1007/s00467-016-3394-5An updated review of tubulointerstitial nephritis.

    Article  PubMed  Google Scholar 

  61. Krishnan N, Perazella MA. Drug-induced acute interstitial nephritis: pathology, pathogenesis, and treatment. Iran J Kidney Dis. 2015;9(1):3–13.

    PubMed  Google Scholar 

  62. Perazella MA. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003;325(6):349–62.

    PubMed  Google Scholar 

  63. Ellis D, Fried WA, Yunis EJ, Blau EB. Acute interstitial nephritis in children: a report of 13 cases and review of the literature. Pediatrics. 1981;67(6):862–70.

    CAS  PubMed  Google Scholar 

  64. Papachristou F, Printza N, Farmaki E, Leontsini M, Kavaki D, Kollios K. Antibiotics-induced acute interstitial nephritis in 6 children. Urol Int. 2006;76(4):348–52.

    PubMed  Google Scholar 

  65. Dixit MP, Nguyen C, Carson T, Guedes B, Dixit NM, Bell JM, et al. Non-steroidal anti-inflammatory drugs-associated acute interstitial nephritis with granular tubular basement membrane deposits. Pediatr Nephrol. 2008;23(1):145–8.

    PubMed  Google Scholar 

  66. Martínez López AB, Álvarez Blanco O, de Pablos Luque A, Morales San-José MD, de la Blanca Rodríguez Sanchez A. Ibuprofen-induced acute interstitial nephritis in the paediatric population. Nefrologia. 2016;36(1):69–71. https://doi.org/10.1016/j.nefro.2015.09.003.

    Article  PubMed  Google Scholar 

  67. Noone D, Teoh CW, Dorman AM, Awan A. Omeprazole induced acute interstitial nephritis in an adolescent. J Nephrol Ther. 2014;4:3. https://doi.org/10.4172/2161-0959.1000159.

    Article  Google Scholar 

  68. Moledina DG, Perazella MA. Drug-induced acute interstitial nephritis. Clin J Am Soc Nephrol. 2017;12(12):2046–9. https://doi.org/10.2215/CJN.07630717.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Eddy AA. Drug-induced tubulointerstitial nephritis: hypersensitivity and necroinflammatory pathways. Pediatr Nephrol. 2020;35(4):547–54. https://doi.org/10.1007/s00467-019-04207-9.

    Article  PubMed  Google Scholar 

  70. Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008;78(6):743–50.

    PubMed  Google Scholar 

  71. Silva FG. Chemical-induced nephropathy: a review of the renal tubulointerstitial lesions in humans. Toxicol Pathol. 2004;32(Suppl 2):71–84.

    CAS  PubMed  Google Scholar 

  72. Yang B, Xie Y, Guo M, Rosner MH, Yang H, Ronco C. Nephrotoxicity and Chinese herbal medicine. Clin J Am Soc Nephrol. 2018;13:1605–11. https://doi.org/10.2215/CJN.11571017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Myers BD, Sibley R, Newton L, Tomlanovich SJ, Boshkos C, Stinson E, et al. The long-term course of cyclosporine-associated chronic nephropathy. Kidney Int. 1988;33(2):590–600.

    CAS  PubMed  Google Scholar 

  74. Loo RM, Ariyarajah V, Oh C, Shen L, Aw MM, Prabhakaran K. Comparison between effects of cyclosporine and tacrolimus on glomerular filtration rate in pediatric post-orthotopic liver transplant patients. Pediatr Transplant. 2006;10(1):55–9.

    CAS  PubMed  Google Scholar 

  75. Fujinaga S, Kaneko K, Muto T, Ohtomo Y, Murakami H, Yamashiro Y. Independent risk factors for chronic cyclosporine induced nephropathy in children with nephrotic syndrome. Arch Dis Child. 2006;91(8):666–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fujinaga S, Urushihara Y. Impact of interrupted cyclosporine treatment on the development of chronic nephrotoxicity in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2017;32(8):1469–70. https://doi.org/10.1007/s00467-017-3692-6.

    Article  PubMed  Google Scholar 

  77. Renner B, Klawitter J, Goldberg R, McCullough JW, Ferreira VP, Cooper JE, et al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J Am Soc Nephrol. 2013;24(11):1849–62. https://doi.org/10.1681/ASN.2012111064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.

    CAS  PubMed  Google Scholar 

  79. Gupta N, Gibson M, Wallace EC. Lithium-induced chronic kidney disease in a pediatric patient. Case Rep Pediatr. 2019;5406482:1–4. https://doi.org/10.1155/2019/5406482.

    Article  Google Scholar 

  80. Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: unravelling the complex pathophysiological threads of the lightest metal. Nephrology. 2018;23:897–903. https://doi.org/10.1111/nep.13263.

    Article  PubMed  Google Scholar 

  81. Presne C, Fakhouri F, Noël LH, Stengel B, Even C, Kreis H, et al. Lithium-induced nephropathy: rate of progression and prognostic factors. Kidney Int. 2003;64(2):585–92.

    CAS  PubMed  Google Scholar 

  82. Perazella MA. Crystal-induced acute renal failure. Am J Med. 1999;106(4):459–65.

    CAS  PubMed  Google Scholar 

  83. Fogazzi GB. Crystalluria: a neglected aspect of urinary sediment analysis. Nephrol Dial Transplant. 1996;11(2):379–87.

    CAS  PubMed  Google Scholar 

  84. Pisoni R, Ruggenenti P, Remuzzi G. Drug-induced thrombotic microangiopathy: incidence, prevention and management. Drug Saf. 2001;24(7):491–501.

    CAS  PubMed  Google Scholar 

  85. Zakarija A, Bennett C. Drug-induced thrombotic microangiopathy. Semin Thromb Hemost. 2005;31(6):681–90.

    CAS  PubMed  Google Scholar 

  86. Radhakrishnan J, Perazella MA. Drug-induced glomerular disease: attention required! Clin J Am Soc Nephrol. 2015;10(7):1287–90. https://doi.org/10.2215/CJN.01010115.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hebert SA, Bohan TP, Erikson CL, Swinford RD. Thrombotic microangiopathy associated with valproic acid toxicity. BMC Nephrol. 2017;18(1):262. https://doi.org/10.1186/s12882-017-0677-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Tjon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Renal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tjon, J., Teoh, C.W. Medication-Induced Nephrotoxicity in Children. Curr Pediatr Rep 8, 122–133 (2020). https://doi.org/10.1007/s40124-020-00223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-020-00223-8

Keywords

Navigation