Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The spatial distribution of the atmospheric humidity is difficult to observe, especially for larger domains with dimensions of tens or hundreds of kilometers. The signals of satellite positioning systems like GPS or Galileo are modified by the atmospheric water vapor, and a combination of a large number of such signals provides an opportunity to observe the humidity distribution with high temporal resolution under all weather conditions. The positioning signals are collected by ground-based receiver networks and processed in a certain way in order to separate the humidity information. The information obtained in this way is a nonlocal path-integrated quantity, and tomographic techniques are required to obtain spatially and temporally resolved humidity fields. The whole processing chain from signal detection and signal processing to the final tomographic reconstruction of the atmospheric humidity distribution is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Bevis, S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, R.H. Ware: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res. 97(D14), 15787–15801 (1992)

    Article  Google Scholar 

  • L. Cucurull, F. Vandenberghe, D. Barker, E. Vilaclara, A. Rius: Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the western Mediterranean Sea, Mon. Weather Rev. 132(3), 749–763 (2004)

    Article  Google Scholar 

  • J. Douša: Towards an operational near real-time precipitable water vapor estimation, Phys. Chem. Earth A 26(3), 189–194 (2001)

    Article  Google Scholar 

  • H.E. Fleming: Satellite remote sensing by the technique of computed tomography, J. Appl. Meteorol. 21(10), 1538–1549 (1982)

    Article  Google Scholar 

  • R.H. Ware, D.W. Fulker, S.A. Stein, D.N. Anderson, S.K. Avery, R.D. Clark, K.K. Droegemeier, J.P. Kuettner, J.B. Minster, S. Sorooshian: Suominet: A real-time national GPS network for atmospheric research and education, Bull. Am. Meteorol. Soc. 81(4), 677–694 (2000)

    Article  Google Scholar 

  • J. Braun, C. Rocken, C. Meertens, R. Ware: Development of a Water Vapor Tomography System Using Low Cost L1 GPS Receivers. In: Nineth ARM Science Team Meet. Proc (ARM, San Antonio 1999)

    Google Scholar 

  • U. Foelsche: Tropospheric Water Vapor Imaging by Combination of Ground-based and Spaceborn GNSS Sounding Data, Wissenschaftlicher Bericht No. 10 (Karl-Franzens-Universität, Graz 1999)

    Google Scholar 

  • A. Flores, G. Ruffini, A. Rius: 4D tropospheric tomography using GPS slant wet delays, Ann. Geophys. 18(2), 223–234 (2000)

    Article  Google Scholar 

  • K. Hirahara: Local GPS tropospheric tomography, Earth Planets Space 52, 935–939 (2000)

    Article  Google Scholar 

  • H. Seko, S. Shimada, H. Nakamura, T. Kato: Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front, Earth Planets Space 52(11), 927–933 (2000)

    Article  Google Scholar 

  • G. Guerova, J. Jones, J. Dousa, G. Dick, S. de Haan, E. Pottiaux, O. Bock, R. Pacione, G. Elgered, H. Vedel, M. Bender: Review of the state-of-the-art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech. 9(11), 5385–5406 (2016)

    Article  Google Scholar 

  • Z. Adavi, M. Mashhadi-Hossainali: 4D-tomographic reconstruction of water vapor using the hybrid regularization technique with application to the North West of Iran, Adv. Space Res. 55(7), 1845–1854 (2015)

    Article  Google Scholar 

  • A.E. MacDonald, Y. Xie, R.H. Ware: Diagnosis of three-dimensional water vapor using a GPS network, Mon. Weather Rev. 130(2), 386–397 (2002)

    Article  Google Scholar 

  • H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P.D. Meutter, A. Deckmyn, A. Delcloo, L. Frappez, M.V. Roozendael: Preliminary signs of the initiation of deep convection by GNSS, Atmos. Chem. Phys. 13, 5425–5449 (2013)

    Article  Google Scholar 

  • M. Bender, G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, A. Raabe, G. Tetzlaff: Development of a GNSS water vapor tomography system using algebraic reconstruction techniques, Adv. Space Res. 47(10), 1704–1720 (2011)

    Article  Google Scholar 

  • M. Troller, A. Geiger, E. Brockmann, H.-G. Kahle: Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks, Geophys. J. Int. 167(2), 509–520 (2006)

    Article  Google Scholar 

  • P.C. Hansen: Rank-Deficient and Discrete Ill-posed Problems (SIAM, Salt Lake City 1998)

    Book  Google Scholar 

  • A.C. Kak, M. Slaney: Principles of Computerized Tomographic Imaging (IEEE Press, New York 1999)

    Google Scholar 

  • F. Natterer: The Mathematics of Computerized Tomography (SIAM, Philadelphia 2001)

    Book  Google Scholar 

  • A. Tarantola: Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, Salt Lake City 2005)

    Book  Google Scholar 

  • W. Menke: Geophysical Data analysis: Discrete Inverse Theory, International Geophysics Series (Academic Press, Cambridge 1989)

    Google Scholar 

  • J.M. Aparicio, S. Laroche: An evaluation of the expression of the atmospheric refractivity for GPS signals, J. Geophys. Res. 116, D11104 (2011)

    Article  Google Scholar 

  • G.T. Thayer: An improved equation for the radio refractive index of air, Radio Sci. 9(10), 803–807 (1974)

    Article  Google Scholar 

  • E.K. Smith, S. Weintraub: The constants in the equation for atmospheric refractive index at radio frequencies, J. Res. Natl. Inst. Stand. 50(1), 39–41 (1953)

    Article  Google Scholar 

  • M. Bevis, S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, R.H. Ware: GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol. 33(3), 379–386 (1994)

    Article  Google Scholar 

  • J.M. Rüeger: Refractive index formulae for radio waves. In: FIG XXII Int. Congr. (International Federation of Surveyors (FIG), Washington D.C. 2002)

    Google Scholar 

  • National Oceanic and Atmospheric Administration: U.S. Standard Atmosphere, 1976 NOAA-S/T 76-1562 (NOAA, Washington D.C. 1976)

    Google Scholar 

  • G. Petit, B. Luzum (Eds.): IERS Conventions, IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M. 2010) pp. 132–150

    Google Scholar 

  • J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The Use of Artificial Satellites for Geodesy, Geophysical Monograph Series, Vol. 15, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington, D.C. 1972) pp. 247–251

    Google Scholar 

  • J. Davis, T. Herring, I. Shapiro, A. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20(6), 1593–1607 (1985)

    Article  Google Scholar 

  • J. Boehm, A. Niell, P. Tregoning, H. Schuh: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett. 33, L07304 (2006)

    Article  Google Scholar 

  • V. de Brito Mendes: Modeling the Neutral–Atmosphere Propagation Delay in Radiometric Space Techniques, Tech. Rep. No. 199 (Univ. New Brunswick, Fredericton 1999)

    Google Scholar 

  • A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101(B2), 3227–3246 (1996)

    Article  Google Scholar 

  • J. Askne, H. Nordius: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci. 22(3), 379–386 (1987)

    Article  Google Scholar 

  • B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins: Global Positioning System – Theory and Practise, 2nd edn. (Springer, Vienna 1993)

    Google Scholar 

  • J. Saastamoinen: Contributions to the theory of atmospheric refraction Part II. Refraction corrections in satellite geodesy, Bull. Geod. 107, 13–34 (1973)

    Article  Google Scholar 

  • H. Brenot, V. Ducrocq, A. Walpersdorf, C. Champollion, O. Caumont: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8–9 September 2002 flash flood over southeastern France, J. Geophys. Res. 111, D15105 (2006)

    Article  Google Scholar 

  • P.E. Gill, G.F. Miller: An algorithm for the integration of unequally spaced data, Comput. J. 15(1), 80–83 (1972)

    Article  Google Scholar 

  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in Fortran 90, Vol. 1, 2nd edn. (Cambridge Univ. Press, New York 2002)

    Google Scholar 

  • D. Perler, A. Geiger, F. Hurter: 4D GPS water vapor tomography: New parameterized approaches, J. Geod. 85(8), 539–550 (2011)

    Article  Google Scholar 

  • R. Eresmaa, H. Järvinen: An observation operator for ground-based GPS slant delays, Tellus A 58, 131–140 (2006)

    Article  Google Scholar 

  • F. Zus, M. Bender, Z. Deng, G. Dick, S. Heise, M. Shang-Guan, J. Wickert: A methodology to compute GPS slant total delays in a numerical weather model, Radio Sci. 47, RS2018 (2012)

    Article  Google Scholar 

  • V.E. Kunitsyn, E.D. Tereshchenko: Ionospheric Tomography (Springer, Berlin, Heidelberg 2010)

    Google Scholar 

  • G. Welch, G. Bishop: An Introduction to the Kalman Filter, SIGGRAPH 2001, Course 8 (Univ. North Carolina, Chapel Hill 2001)

    Google Scholar 

  • W. Rohm, K. Zhang, J. Bosy: Limited constraint, robust Kalman filtering for GNSS troposphere tomography, Atmos. Meas. Tech. 7(5), 1475–1486 (2014)

    Article  Google Scholar 

  • M. Bender, A. Raabe: Preconditions to ground-based GPS water vapour tomography, Ann. Geophys. 25(8), 1727–1734 (2007)

    Article  Google Scholar 

  • A. Carrassi, M. Bocquet, L. Bertino, G. Evensen: Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIREs Climate Change 9, 1757–7780

    Google Scholar 

  • F. Hurter, O. Maier: Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing datasets and measurements on the ground, Atmos. Meas. Tech. 6, 3083–3098 (2013)

    Article  Google Scholar 

  • R. Odolinski, P.J.G. Teunissen: Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: A low-cost and high-grade receivers GPS-BDS RTK analysis, J. Geod. 90(11), 1255–1278 (2016)

    Article  Google Scholar 

  • Z. Deng, M. Bender, G. Dick, M. Ge, J. Wickert, M. Ramatschi, X. Zou: Retrieving tropospheric delays from GPS networks densified with single frequency receivers, Geophys. Res. Lett. 36, L19802 (2009)

    Article  Google Scholar 

  • Z. Deng, M. Bender, F. Zus, M. Ge, G. Dick, M. Ramatschi, J. Wickert, U. Löhnert, S. Schön: Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers, Radio Sci. 46, RS6007 (2011)

    Article  Google Scholar 

  • P.J.G. Teunissen, O. Montenbruck (Eds.): Springer Handbook of Global Navigation Satellite Systems (Springer, Cham 2017)

    Google Scholar 

  • G. Seeber: Satellite Geodesy, 2nd edn. (de Gruyter, Berlin, New York 2003)

    Book  Google Scholar 

  • T. Hobiger, N. Jakowski: Atmospheric signal propagation. In: Springer Handbook of Global Navigation Satellite Systems, ed. by P.J. Teunissen, O. Montenbruck (Springer, Cham 2017) pp. 165–193

    Chapter  Google Scholar 

  • G. Elgered, J. Wickert: Monitoring of the neutral atmosphere. In: Springer Handbook of Global Navigation Satellite Systems, ed. by P.J.G. Teunissen, O. Montenbruck (Springer, Cham 2017) pp. 1109–1133

    Chapter  Google Scholar 

  • G. Gendt, G. Dick, W. Söhne: GFZ Analysis Center of IGS – Annual report 1998. In: IGS 1998 Technical Reports, ed. by K. Gowey, R. Neilan, A. Moore (IGS, Pasadena 1999) pp. 79–87

    Google Scholar 

  • R. Dach, S. Lutz, P. Walser, P. Fridez: Bernese GNSS Software Version 5.2 (Univ. Bern, Bern 2015)

    Google Scholar 

  • J. Braun, C. Rocken, R. Ware: Validation of line-of-sight water vapor measurements with GPS, Radio Sci. 36(3), 459–472 (2001)

    Article  Google Scholar 

  • J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins, F.H. Webb: Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. 102(B3), 5005–5018 (1997)

    Article  Google Scholar 

  • J. Kouba, F. Lahaye, P. Tétreault: Precise point positioning. In: Springer Handbook of Global Navigation Satellite Systems, ed. by P.J.G. Teunissen, O. Montenbruck (Springer, Cham 2017) pp. 723–751

    Chapter  Google Scholar 

  • J. Jones, G. Guerova, J. Douša, G. Dick, S. de Haan, E. Pottiaux, O. Bock, R. Pacione, R. van Malderen (Eds.): COST Action 1206 Final Report – Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate (Springer, Cham 2018)

    Google Scholar 

  • G. Dick, G. Gendt, C. Reigber: First experience with near real-time water vapor estimation in a German GPS network, J. Atmos. Sol. Terr. Phys. 63(12), 1295–1304 (2001)

    Article  Google Scholar 

  • G. Gendt, G. Dick, C. Reigber, M. Tomassini, Y. Liu, M. Ramatschi: Near real time GPS water vapor monitoring for numerical weather prediction in Germany, J. Meteorol. Soc. Japan 82(1B), 361–370 (2004)

    Article  Google Scholar 

  • M. Ge, G. Gendt, G. Dick, F.P. Zhang, M. Rothacher: A new data processing strategy for huge GNSS global networks, J. Geod. 80(4), 199–203 (2006)

    Article  Google Scholar 

  • P.M.V. Subbarao, P. Munshi, K. Muralidhar: Performance of iterative tomographic algorithms applied to non-destructive evaluation with limited data, NDT & E International 30(6), 359–370 (1997)

    Article  Google Scholar 

  • R. Notarpietro, M. Cucca, M. Gabella, G. Venuti, G. Perona: Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks, Adv. Space Res. 47(5), 769–912 (2011)

    Article  Google Scholar 

  • M. Bender, R. Stosius, F. Zus, G. Dick, J. Wickert, A. Raabe: GNSS water vapour tomography – Expected improvements by combining GPS, GLONASS and Galileo observations, Adv. Space Res. 47(5), 886–897 (2011)

    Article  Google Scholar 

  • W. Rohm: The ground GNSS tomography – Unconstrained approach, Adv. Space Res. 51(3), 501–513 (2013)

    Article  Google Scholar 

  • A. Flores, J.-G. de Arellano, L.P. Gradinarsky, A. Rius: Tomography of the lower troposphere using a small dense network of GPS receivers, IEEE Trans. Geosci. Remote Sens. 39(2), 439–447 (2001)

    Article  Google Scholar 

  • J.V. Baelen, M. Reverdy, F. Tridon, L. Labbouz, G. Dick, M. Bender, M. Hagen: On the relationship between water vapour field evolution and the life cycle of precipitation systems, Q. J. R. Metorol. Soc. 137(S1), 204–223 (2011)

    Article  Google Scholar 

  • H. Brenot, A. Walpersdorf, M. Reverdy, J. van Baelen, V. Ducrocq, C. Champollion, F. Masson, E. Doerflinger, P. Collard, P. Giroux: A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France), Atmos. Meas. Tech. 7, 553–578 (2014)

    Article  Google Scholar 

  • P. Benevides, J. Catalao, P. Miranda: Experimental GNSS tomography study in Lisbon (Portugal), Fis. Tierra 26, 65–79 (2014)

    Google Scholar 

  • S. de Haan: Meteorological Applications of a Surface Network of Global Positioning System Receivers, Ph.D. Thesis (Wageningen Univ., Wageningen 2008)

    Google Scholar 

  • P. Benevides, J. Catalao, G. Nico, P.M.A. Miranda: 4D wet refractivity estimation in the atmosphere using GNSS tomography initialized by radiosonde and AIRS measurements: Results from a 1-week intensive campaign, GPS Solutions 22, 91 (2018)

    Article  Google Scholar 

  • S.J. Julier, J.J. LaViola: On Kalman filtering with nonlinear equality constraints, IEEE Trans. Signal Process. 55(6), 2774–2784 (2007)

    Article  Google Scholar 

  • T. Ning, J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, D. Smale: The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations, Atmos. Meas. Tech. 9(1), 79–92 (2016)

    Article  Google Scholar 

  • O. Bock, P. Willis, J. Wang, C. Mears: A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification, J. Geophys. Res. 119(12), 7209–7230 (2014)

    Article  Google Scholar 

  • K. Teke, T. Nilsson, J. Böhm, T. Hobiger, P. Steigenberger, S. García-Espada, R. Haas, P. Willis: Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns, J. Geod. 87(10), 981–1001 (2013)

    Article  Google Scholar 

  • T. Ning, R. Haas, G. Elgered, U. Willén: Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden, J. Geod. 86(7), 565–575 (2012)

    Article  Google Scholar 

  • M. Kačmařík, J. Douša, J. Zapletal: Comparison of GPS slant wet delays acquired by different techniques, Acta Geodyn. Geomater. 9(4), 427–433 (2012)

    Google Scholar 

  • R.V. Malderen, H. Brenot, E. Pottiaux, S. Beirle, C. Hermans, M.D. Maziére, T. Wagner, H.D. Backer, C. Bruyninx: A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech. 7(8), 2487–2512 (2014)

    Article  Google Scholar 

  • M. Shangguan, S. Heise, M. Bender, G. Dick, M. Ramatschi, J. Wickert: Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode, Ann. Geophys. 33(1), 55–61 (2015)

    Article  Google Scholar 

  • M. Kačmařík, J. Douša, G. Dick, F. Zus, H. Brenot, G. Möller, E. Pottiaux, J. Kapłon, P. Hordyniec, P. Václavovic, L. Morel: Inter-technique validation of tropospheric slant total delays, Atmos. Meas. Tech. 10, 2183–2208 (2017)

    Article  Google Scholar 

  • M. Shangguan, M. Bender, M. Ramatschi, G. Dick, J. Wickert, A. Raabe, R. Galas: GPS tomography: Validation of reconstructed 3-D humidity fields with radiosonde profiles, Ann. Geophys. 31(9), 1491–1505 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Bender, M., Dick, G. (2021). GNSS Water Vapor Tomography. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_36

Download citation

Publish with us

Policies and ethics